These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19758852)

  • 1. A novel concept for a prosthetic hand with a bidirectional interface: a feasibility study.
    Cipriani C; Antfolk C; Balkenius C; Rosén B; Lundborg G; Carrozza MC; Sebelius F
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2739-43. PubMed ID: 19758852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A virtual reality environment for designing and fitting neural prosthetic limbs.
    Hauschild M; Davoodi R; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):9-15. PubMed ID: 17436870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechatronic device for the rehabilitation of ankle motor function.
    Bucca G; Bezzolato A; Bruni S; Molteni F
    J Biomech Eng; 2009 Dec; 131(12):125001. PubMed ID: 20524738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of EMG signals for controlling exoskeleton robots.
    Fleischer C; Wege A; Kondak K; Hommel G
    Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrotactile sensory substitution for electromyographic control of object manipulation.
    Rombokas E; Stepp CE; Chang C; Malhotra M; Matsuoka Y
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2226-32. PubMed ID: 23508245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force and touch make video games 'serious' for dexterity rehabilitation.
    Confalonieri M; Guandalini G; Da Lio M; De Cecco M
    Stud Health Technol Inform; 2012; 177():139-44. PubMed ID: 22942045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid force-velocity sliding mode control of a prosthetic hand.
    Engeberg ED; Meek SG; Minor MA
    IEEE Trans Biomed Eng; 2008 May; 55(5):1572-81. PubMed ID: 18440903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A haptic knob for rehabilitation of hand function.
    Lambercy O; Dovat L; Gassert R; Burdet E; Teo CL; Milner T
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):356-66. PubMed ID: 17894268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based development of neural prostheses for movement.
    Davoodi R; Urata C; Hauschild M; Khachani M; Loeb GE
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1909-18. PubMed ID: 18018686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online electromyographic control of a robotic prosthesis.
    Shenoy P; Miller KJ; Crawford B; Rao RN
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1128-35. PubMed ID: 18334405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standing-up robot: an assistive rehabilitative device for training and assessment.
    Kamnik R; Bajd T
    J Med Eng Technol; 2004; 28(2):74-80. PubMed ID: 14965861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of a pneumatic balloon tactile display for robot-assisted surgery based on human perception.
    King CH; Culjat MO; Franco ML; Bisley JW; Dutson E; Grundfest WS
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2593-600. PubMed ID: 18990629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects.
    Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary functional assessment of a multigrasp myoelectric prosthesis.
    Dalley SA; Bennett DA; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4172-5. PubMed ID: 23366847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and testing of a tactile feedback system for robotic surgery.
    Grundfest WS; Culjat MO; King CH; Franco ML; Wottawa C; Lewis CE; Bisley JW; Dutson EP
    Stud Health Technol Inform; 2009; 142():103-8. PubMed ID: 19377124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrotactile display coding for a balance prosthesis.
    Kadkade PP; Benda BJ; Schmidt PB; Wall C
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):392-9. PubMed ID: 14960115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A robotic vehicle for disabled children. Providing assisted mobility with the PALMA project.
    Ceres R; Pons JL; Calderón L; Jiménez AR; Azevedo L
    IEEE Eng Med Biol Mag; 2005; 24(6):55-63. PubMed ID: 16382806
    [No Abstract]   [Full Text] [Related]  

  • 20. The Neurochip BCI: towards a neural prosthesis for upper limb function.
    Jackson A; Moritz CT; Mavoori J; Lucas TH; Fetz EE
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):187-90. PubMed ID: 16792290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.