These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 19758983)
1. Molecular basis of transcriptional mutagenesis at 8-oxoguanine. Damsma GE; Cramer P J Biol Chem; 2009 Nov; 284(46):31658-63. PubMed ID: 19758983 [TBL] [Abstract][Full Text] [Related]
2. Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion. Batra VK; Shock DD; Beard WA; McKenna CE; Wilson SH Proc Natl Acad Sci U S A; 2012 Jan; 109(1):113-8. PubMed ID: 22178760 [TBL] [Abstract][Full Text] [Related]
3. 8-Oxo-guanine DNA damage induces transcription errors by escaping two distinct fidelity control checkpoints of RNA polymerase II. Konovalov KA; Pardo-Avila F; Tse CKM; Oh J; Wang D; Huang X J Biol Chem; 2019 Mar; 294(13):4924-4933. PubMed ID: 30718278 [TBL] [Abstract][Full Text] [Related]
4. Transcription processing at 1,N2-ethenoguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. Dimitri A; Goodenough AK; Guengerich FP; Broyde S; Scicchitano DA J Mol Biol; 2008 Jan; 375(2):353-66. PubMed ID: 18022639 [TBL] [Abstract][Full Text] [Related]
5. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. Kuraoka I; Endou M; Yamaguchi Y; Wada T; Handa H; Tanaka K J Biol Chem; 2003 Feb; 278(9):7294-9. PubMed ID: 12466278 [TBL] [Abstract][Full Text] [Related]
6. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. van der Kemp PA; Thomas D; Barbey R; de Oliveira R; Boiteux S Proc Natl Acad Sci U S A; 1996 May; 93(11):5197-202. PubMed ID: 8643552 [TBL] [Abstract][Full Text] [Related]
7. Effects of DNA lesions on the transcription reaction of mitochondrial RNA polymerase: implications for bypass RNA synthesis on oxidative DNA lesions. Nakanishi N; Fukuoh A; Kang D; Iwai S; Kuraoka I Mutagenesis; 2013 Jan; 28(1):117-23. PubMed ID: 23053822 [TBL] [Abstract][Full Text] [Related]
8. Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription. Bushnell DA; Kornberg RD Proc Natl Acad Sci U S A; 2003 Jun; 100(12):6969-73. PubMed ID: 12746498 [TBL] [Abstract][Full Text] [Related]
9. Effect of 8-oxoguanine on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. Tornaletti S; Maeda LS; Kolodner RD; Hanawalt PC DNA Repair (Amst); 2004 May; 3(5):483-94. PubMed ID: 15084310 [TBL] [Abstract][Full Text] [Related]
10. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Freudenthal BD; Beard WA; Wilson SH Nucleic Acids Res; 2013 Feb; 41(3):1848-58. PubMed ID: 23267011 [TBL] [Abstract][Full Text] [Related]
11. PCNA monoubiquitylation and DNA polymerase eta ubiquitin-binding domain are required to prevent 8-oxoguanine-induced mutagenesis in Saccharomyces cerevisiae. van der Kemp PA; de Padula M; Burguiere-Slezak G; Ulrich HD; Boiteux S Nucleic Acids Res; 2009 May; 37(8):2549-59. PubMed ID: 19264809 [TBL] [Abstract][Full Text] [Related]
12. Strand-specific processing of 8-oxoguanine by the human mismatch repair pathway: inefficient removal of 8-oxoguanine paired with adenine or cytosine. Larson ED; Iams K; Drummond JT DNA Repair (Amst); 2003 Nov; 2(11):1199-210. PubMed ID: 14599742 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for error-free replication of oxidatively damaged DNA by yeast DNA polymerase η. Silverstein TD; Jain R; Johnson RE; Prakash L; Prakash S; Aggarwal AK Structure; 2010 Nov; 18(11):1463-70. PubMed ID: 21070945 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for the lack of opposite base specificity of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase. Faucher F; Wallace SS; Doublié S DNA Repair (Amst); 2009 Nov; 8(11):1283-9. PubMed ID: 19747886 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Fromme JC; Banerjee A; Huang SJ; Verdine GL Nature; 2004 Feb; 427(6975):652-6. PubMed ID: 14961129 [TBL] [Abstract][Full Text] [Related]
16. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase. Wang L; Lee SJ; Verdine GL J Biol Chem; 2015 Jul; 290(28):17096-105. PubMed ID: 25995449 [TBL] [Abstract][Full Text] [Related]
17. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Gnatt AL; Cramer P; Fu J; Bushnell DA; Kornberg RD Science; 2001 Jun; 292(5523):1876-82. PubMed ID: 11313499 [TBL] [Abstract][Full Text] [Related]
18. Structural biology. A marvellous machine for making messages. Klug A Science; 2001 Jun; 292(5523):1844-6. PubMed ID: 11397933 [No Abstract] [Full Text] [Related]
19. The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta. McCulloch SD; Kokoska RJ; Garg P; Burgers PM; Kunkel TA Nucleic Acids Res; 2009 May; 37(9):2830-40. PubMed ID: 19282446 [TBL] [Abstract][Full Text] [Related]
20. Impact of conformational heterogeneity of OxoG lesions and their pairing partners on bypass fidelity by Y family polymerases. Rechkoblit O; Malinina L; Cheng Y; Geacintov NE; Broyde S; Patel DJ Structure; 2009 May; 17(5):725-36. PubMed ID: 19446528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]