These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 19759180)

  • 21. Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape.
    Patterson MJ; McKenzie CG; Smith DA; da Silva Dantas A; Sherston S; Veal EA; Morgan BA; MacCallum DM; Erwig LP; Quinn J
    Antioxid Redox Signal; 2013 Dec; 19(18):2244-60. PubMed ID: 23706023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The MAPK Hog1 mediates the response to amphotericin B in Candida albicans.
    Guirao-Abad JP; Sánchez-Fresneda R; Román E; Pla J; Argüelles JC; Alonso-Monge R
    Fungal Genet Biol; 2020 Mar; 136():103302. PubMed ID: 31756382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro effect of malachite green on Candida albicans involves multiple pathways and transcriptional regulators UPC2 and STP2.
    Dhamgaye S; Devaux F; Manoharlal R; Vandeputte P; Shah AH; Singh A; Blugeon C; Sanglard D; Prasad R
    Antimicrob Agents Chemother; 2012 Jan; 56(1):495-506. PubMed ID: 22006003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional characterization of the small heat shock protein Hsp12p from Candida albicans.
    Fu MS; De Sordi L; Mühlschlegel FA
    PLoS One; 2012; 7(8):e42894. PubMed ID: 22880130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-canonical Activities of Hog1 Control Sensitivity of
    Morales-Menchén A; Navarro-García F; Guirao-Abad JP; Román E; Prieto D; Coman IV; Pla J; Alonso-Monge R
    Front Cell Infect Microbiol; 2018; 8():135. PubMed ID: 29774204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans.
    Ene IV; Heilmann CJ; Sorgo AG; Walker LA; de Koster CG; Munro CA; Klis FM; Brown AJ
    Proteomics; 2012 Nov; 12(21):3164-79. PubMed ID: 22997008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters.
    Sanglard D; Kuchler K; Ischer F; Pagani JL; Monod M; Bille J
    Antimicrob Agents Chemother; 1995 Nov; 39(11):2378-86. PubMed ID: 8585712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans.
    Bahn YS; Sundstrom P
    J Bacteriol; 2001 May; 183(10):3211-23. PubMed ID: 11325951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation.
    Day AM; Smith DA; Ikeh MA; Haider M; Herrero-de-Dios CM; Brown AJ; Morgan BA; Erwig LP; MacCallum DM; Quinn J
    PLoS Pathog; 2017 Jan; 13(1):e1006131. PubMed ID: 28135328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality.
    Lagree K; Woolford CA; Huang MY; May G; McManus CJ; Solis NV; Filler SG; Mitchell AP
    PLoS Genet; 2020 Jan; 16(1):e1008582. PubMed ID: 31961865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes.
    Kaloriti D; Jacobsen M; Yin Z; Patterson M; Tillmann A; Smith DA; Cook E; You T; Grimm MJ; Bohovych I; Grebogi C; Segal BH; Gow NA; Haynes K; Quinn J; Brown AJ
    mBio; 2014 Jul; 5(4):e01334-14. PubMed ID: 25028425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans.
    Román E; Nombela C; Pla J
    Mol Cell Biol; 2005 Dec; 25(23):10611-27. PubMed ID: 16287872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Genomewide Alternative Splicing Events in Sequential, Isogenic Clinical Isolates of Candida albicans Reveals a Novel Mechanism of Drug Resistance and Tolerance to Cellular Stresses.
    Muzafar S; Sharma RD; Shah AH; Gaur NA; Dasgupta U; Chauhan N; Prasad R
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32817456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The malfunction of peroxisome has an impact on the oxidative stress sensitivity in Candida albicans.
    Chen Y; Yu Q; Wang H; Dong Y; Jia C; Zhang B; Xiao C; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2016 Oct; 95():1-12. PubMed ID: 27473887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin.
    Singh SD; Robbins N; Zaas AK; Schell WA; Perfect JR; Cowen LE
    PLoS Pathog; 2009 Jul; 5(7):e1000532. PubMed ID: 19649312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fcr1p inhibits development of fluconazole resistance in Candida albicans by abolishing CDR1 induction.
    Shen H; An MM; Wang de J; Xu Z; Zhang JD; Gao PH; Cao YY; Cao YB; Jiang YY
    Biol Pharm Bull; 2007 Jan; 30(1):68-73. PubMed ID: 17202662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
    Cao F; Lane S; Raniga PP; Lu Y; Zhou Z; Ramon K; Chen J; Liu H
    Mol Biol Cell; 2006 Jan; 17(1):295-307. PubMed ID: 16267276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms.
    Sanglard D; Coste AT
    Antimicrob Agents Chemother; 2016 Jan; 60(1):229-38. PubMed ID: 26482310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans.
    Schubert S; Barker KS; Znaidi S; Schneider S; Dierolf F; Dunkel N; Aïd M; Boucher G; Rogers PD; Raymond M; Morschhäuser J
    Antimicrob Agents Chemother; 2011 May; 55(5):2212-23. PubMed ID: 21402859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stress-induced gene expression in Candida albicans: absence of a general stress response.
    Enjalbert B; Nantel A; Whiteway M
    Mol Biol Cell; 2003 Apr; 14(4):1460-7. PubMed ID: 12686601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.