These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

658 related articles for article (PubMed ID: 19759197)

  • 1. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis.
    Shen R; Olshen AB; Ladanyi M
    Bioinformatics; 2009 Nov; 25(22):2906-12. PubMed ID: 19759197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of breast and lung tumors by integration of multiple data types with functional sparse-factor analysis.
    Bismeijer T; Canisius S; Wessels LFA
    PLoS Comput Biol; 2018 Oct; 14(10):e1006520. PubMed ID: 30379847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets.
    Meng C; Helm D; Frejno M; Kuster B
    J Proteome Res; 2016 Mar; 15(3):755-65. PubMed ID: 26653205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian two-way latent structure model for genomic data integration reveals few pan-genomic cluster subtypes in a breast cancer cohort.
    Swanson DM; Lien T; Bergholtz H; Sørlie T; Frigessi A
    Bioinformatics; 2019 Dec; 35(23):4886-4897. PubMed ID: 31077301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative clustering of multi-level 'omic data based on non-negative matrix factorization algorithm.
    Chalise P; Fridley BL
    PLoS One; 2017; 12(5):e0176278. PubMed ID: 28459819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. COPS: A novel platform for multi-omic disease subtype discovery via robust multi-objective evaluation of clustering algorithms.
    Rintala TJ; Fortino V
    PLoS Comput Biol; 2024 Aug; 20(8):e1012275. PubMed ID: 39102448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clusternomics: Integrative context-dependent clustering for heterogeneous datasets.
    Gabasova E; Reid J; Wernisch L
    PLoS Comput Biol; 2017 Oct; 13(10):e1005781. PubMed ID: 29036190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data.
    Mo Q; Shen R; Guo C; Vannucci M; Chan KS; Hilsenbeck SG
    Biostatistics; 2018 Jan; 19(1):71-86. PubMed ID: 28541380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets.
    Wei Z; Zhang Y; Weng W; Chen J; Cai H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a reliable DNA copy-number-based machine learning algorithm (CopyClust) for breast cancer integrative cluster classification.
    Young CC; Eason K; Manzano Garcia R; Moulange R; Mukherjee S; Chin SF; Caldas C; Rueda OM
    Sci Rep; 2024 May; 14(1):11861. PubMed ID: 38789621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative clustering of high-dimensional data with joint and individual clusters.
    Hellton KH; Thoresen M
    Biostatistics; 2016 Jul; 17(3):537-48. PubMed ID: 26917056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An algorithm for classifying tumors based on genomic aberrations and selecting representative tumor models.
    Lu X; Zhang K; Van Sant C; Coon J; Semizarov D
    BMC Med Genomics; 2010 Jun; 3():23. PubMed ID: 20569491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data-driven characterization of molecular phenotypes across heterogeneous sample collections.
    Mehtonen J; Pölönen P; Häyrynen S; Dufva O; Lin J; Liuksiala T; Granberg K; Lohi O; Hautamäki V; Nykter M; Heinäniemi M
    Nucleic Acids Res; 2019 Jul; 47(13):e76. PubMed ID: 31329928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian consensus clustering.
    Lock EF; Dunson DB
    Bioinformatics; 2013 Oct; 29(20):2610-6. PubMed ID: 23990412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression.
    Liu Y; Gu Q; Hou JP; Han J; Ma J
    BMC Bioinformatics; 2014 Feb; 15():37. PubMed ID: 24491042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative clustering of multi-level omics data for disease subtype discovery using sequential double regularization.
    Kim S; Oesterreich S; Kim S; Park Y; Tseng GC
    Biostatistics; 2017 Jan; 18(1):165-179. PubMed ID: 27549122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative clustering by nonnegative matrix factorization can reveal coherent functional groups from gene profile data.
    Brdar S; Crnojevic V; Zupan B
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):698-708. PubMed ID: 24733033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative and regularized principal component analysis of multiple sources of data.
    Liu B; Shen X; Pan W
    Stat Med; 2016 Jun; 35(13):2235-50. PubMed ID: 26756854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Joint Latent Variable Models and Integrative Tumor Subtype Discovery.
    Liu B; Shen X; Pan W
    Stat Anal Data Min; 2016 Apr; 9(2):106-116. PubMed ID: 29333206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.