These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19759234)

  • 1. Evolutionary dynamics of rhodopsin type 2 opsins in vertebrates.
    Yokoyama S; Tada T
    Mol Biol Evol; 2010 Jan; 27(1):133-41. PubMed ID: 19759234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of the green-light-sensitive visual opsin genes (RH2) in teleost fishes.
    Musilova Z; Cortesi F
    Vision Res; 2023 May; 206():108204. PubMed ID: 36868011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.
    Lagman D; Ocampo Daza D; Widmark J; Abalo XM; Sundström G; Larhammar D
    BMC Evol Biol; 2013 Nov; 13():238. PubMed ID: 24180662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin and adaptation of green-sensitive (RH2) pigments in vertebrates.
    Yokoyama S; Jia H
    FEBS Open Bio; 2020 May; 10(5):873-882. PubMed ID: 32189477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of the rhodopsin gene of marine lamprey, Petromyzon marinus.
    Zhang H; Yokoyama S
    Gene; 1997 May; 191(1):1-6. PubMed ID: 9210581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orthologous Divergence and Paralogous Anticonvergence in Molecular Evolution of Triplicated Green Opsin Genes in Medaka Fish, Genus Oryzias.
    Matsumoto Y; Oda S; Mitani H; Kawamura S
    Genome Biol Evol; 2020 Jun; 12(6):911-923. PubMed ID: 32467976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments.
    Yokoyama S
    J Hered; 2000; 91(3):215-20. PubMed ID: 10833047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders.
    Koyanagi M; Nagata T; Katoh K; Yamashita S; Tokunaga F
    J Mol Evol; 2008 Feb; 66(2):130-7. PubMed ID: 18217181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene duplication and spectral diversification of cone visual pigments of zebrafish.
    Chinen A; Hamaoka T; Yamada Y; Kawamura S
    Genetics; 2003 Feb; 163(2):663-75. PubMed ID: 12618404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and functional characterization of opsins in barfin flounder (Verasper moseri).
    Kasagi S; Mizusawa K; Murakami N; Andoh T; Furufuji S; Kawamura S; Takahashi A
    Gene; 2015 Feb; 556(2):182-91. PubMed ID: 25433330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies.
    Liénard MA; Bernard GD; Allen A; Lassance JM; Song S; Childers RR; Yu N; Ye D; Stephenson A; Valencia-Montoya WA; Salzman S; Whitaker MRL; Calonje M; Zhang F; Pierce NE
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33547236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates.
    Shi Y; Yokoyama S
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8308-13. PubMed ID: 12824471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation.
    Chang BS; Crandall KA; Carulli JP; Hartl DL
    Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation.
    Chinen A; Matsumoto Y; Kawamura S
    Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary dynamics of Rh2 opsins in birds demonstrate an episode of accelerated evolution in the New World warblers (Setophaga).
    Bloch NI; Price TD; Chang BS
    Mol Ecol; 2015 May; 24(10):2449-62. PubMed ID: 25827331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes).
    Matsumoto Y; Fukamachi S; Mitani H; Kawamura S
    Gene; 2006 Apr; 371(2):268-78. PubMed ID: 16460888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules.
    Zuker CS; Montell C; Jones K; Laverty T; Rubin GM
    J Neurosci; 1987 May; 7(5):1550-7. PubMed ID: 2437266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homothorax controls a binary Rhodopsin switch in Drosophila ocelli.
    Mishra AK; Fritsch C; Voutev R; Mann RS; Sprecher SG
    PLoS Genet; 2021 Jul; 17(7):e1009460. PubMed ID: 34314427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retention of duplicated long-wavelength opsins in mosquito lineages by positive selection and differential expression.
    Giraldo-Calderón GI; Zanis MJ; Hill CA
    BMC Evol Biol; 2017 Mar; 17(1):84. PubMed ID: 28320313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive selection and functional divergence after melanopsin gene duplication.
    Dong C; Zhang J; Qiao J; He G
    Biochem Genet; 2012 Apr; 50(3-4):235-48. PubMed ID: 21952875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.