These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19759345)

  • 1. Starch synthesis in Arabidopsis is achieved by spatial cotranscription of core starch metabolism genes.
    Tsai HL; Lue WL; Lu KJ; Hsieh MH; Wang SM; Chen J
    Plant Physiol; 2009 Nov; 151(3):1582-95. PubMed ID: 19759345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The gene encoding the catalytically inactive beta-amylase BAM4 involved in starch breakdown in Arabidopsis leaves is expressed preferentially in vascular tissues in source and sink organs.
    Francisco P; Li J; Smith SM
    J Plant Physiol; 2010 Jul; 167(11):890-5. PubMed ID: 20153546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Arabidopsis thaliana genes, KOR2 and KOR3, which encode membrane-anchored endo-1,4-beta-D-glucanases, are differentially expressed in developing leaf trichomes and their support cells.
    Mølhøj M; Jørgensen B; Ulvskov P; Borkhardt B
    Plant Mol Biol; 2001 Jun; 46(3):263-75. PubMed ID: 11488474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis.
    Kirchsteiger K; Ferrández J; Pascual MB; González M; Cejudo FJ
    Plant Cell; 2012 Apr; 24(4):1534-48. PubMed ID: 22505729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The small subunit ADP-glucose pyrophosphorylase ( ApS) promoter mediates okadaic acid-sensitive uidA expression in starch-synthesizing tissues and cells in Arabidopsis.
    Siedlecka A; Ciereszko I; Mellerowicz E; Martz F; Chen J; Kleczkowski LA
    Planta; 2003 Jun; 217(2):184-92. PubMed ID: 12783326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis.
    Muñoz-Bertomeu J; Cascales-Miñana B; Mulet JM; Baroja-Fernández E; Pozueta-Romero J; Kuhn JM; Segura J; Ros R
    Plant Physiol; 2009 Oct; 151(2):541-58. PubMed ID: 19675149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of Arabidopsis plastidial phosphoglucomutase in tobacco stimulates photosynthetic carbon flow into starch synthesis.
    Uematsu K; Suzuki N; Iwamae T; Inui M; Yukawa H
    J Plant Physiol; 2012 Oct; 169(15):1454-62. PubMed ID: 22705254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillation of mRNA level and activity of granule-bound starch synthase I in Arabidopsis leaves during the day/night cycle.
    Tenorio G; Orea A; Romero JM; Mérida A
    Plant Mol Biol; 2003 Apr; 51(6):949-58. PubMed ID: 12777053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sink-specific plastidic phosphate transporter PHT4;2 influences starch accumulation and leaf size in Arabidopsis.
    Irigoyen S; Karlsson PM; Kuruvilla J; Spetea C; Versaw WK
    Plant Physiol; 2011 Dec; 157(4):1765-77. PubMed ID: 21960139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UDP-glucose pyrophosphorylase is not rate limiting, but is essential in Arabidopsis.
    Meng M; Geisler M; Johansson H; Harholt J; Scheller HV; Mellerowicz EJ; Kleczkowski LA
    Plant Cell Physiol; 2009 May; 50(5):998-1011. PubMed ID: 19366709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression profiling of genes involved in starch synthesis in sink and source organs of rice.
    Ohdan T; Francisco PB; Sawada T; Hirose T; Terao T; Satoh H; Nakamura Y
    J Exp Bot; 2005 Dec; 56(422):3229-44. PubMed ID: 16275672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s).
    Turlapati PV; Kim KW; Davin LB; Lewis NG
    Planta; 2011 Mar; 233(3):439-70. PubMed ID: 21063888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves.
    Li L; Foster CM; Gan Q; Nettleton D; James MG; Myers AM; Wurtele ES
    Plant J; 2009 May; 58(3):485-98. PubMed ID: 19154206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastidial localization of a potato 'Nudix' hydrolase of ADP-glucose linked to starch biosynthesis.
    Muñoz FJ; Baroja-Fernández E; Ovecka M; Li J; Mitsui T; Sesma MT; Montero M; Bahaji A; Ezquer I; Pozueta-Romero J
    Plant Cell Physiol; 2008 Nov; 49(11):1734-46. PubMed ID: 18801762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses.
    Wang NN; Shih MC; Li N
    J Exp Bot; 2005 Mar; 56(413):909-20. PubMed ID: 15699063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress.
    Valerio C; Costa A; Marri L; Issakidis-Bourguet E; Pupillo P; Trost P; Sparla F
    J Exp Bot; 2011 Jan; 62(2):545-55. PubMed ID: 20876336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in Arabidopsis thaliana.
    Yamaoka Y; Yu Y; Mizoi J; Fujiki Y; Saito K; Nishijima M; Lee Y; Nishida I
    Plant J; 2011 Aug; 67(4):648-61. PubMed ID: 21554450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of two L-Galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana.
    Gao Y; Badejo AA; Sawa Y; Ishikawa T
    Plant Cell Physiol; 2012 Mar; 53(3):592-601. PubMed ID: 22323769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model.
    Ingkasuwan P; Netrphan S; Prasitwattanaseree S; Tanticharoen M; Bhumiratana S; Meechai A; Chaijaruwanich J; Takahashi H; Cheevadhanarak S
    BMC Syst Biol; 2012 Aug; 6():100. PubMed ID: 22898356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis.
    Sanjaya ; Durrett TP; Weise SE; Benning C
    Plant Biotechnol J; 2011 Oct; 9(8):874-83. PubMed ID: 22003502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.