BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19759613)

  • 1. Epigenetics: Ready for the marks.
    Feil R
    Nature; 2009 Sep; 461(7262):359-60. PubMed ID: 19759613
    [No Abstract]   [Full Text] [Related]  

  • 2. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints.
    Ciccone DN; Su H; Hevi S; Gay F; Lei H; Bajko J; Xu G; Li E; Chen T
    Nature; 2009 Sep; 461(7262):415-8. PubMed ID: 19727073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oocyte-derived histone H3 lysine 27 methylation controls gene expression in the early embryo.
    Pathak R; Feil R
    Nat Struct Mol Biol; 2017 Sep; 24(9):685-686. PubMed ID: 28880861
    [No Abstract]   [Full Text] [Related]  

  • 4. Histone lysine demethylases and their impact on epigenetics.
    Trojer P; Reinberg D
    Cell; 2006 Apr; 125(2):213-7. PubMed ID: 16630806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation.
    Jelinic P; Stehle JC; Shaw P
    PLoS Biol; 2006 Oct; 4(11):e355. PubMed ID: 17048991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetics: reversing the 'irreversible'.
    Jones RS
    Nature; 2007 Nov; 450(7168):357-9. PubMed ID: 18004369
    [No Abstract]   [Full Text] [Related]  

  • 7. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development.
    Zhang B; Zheng H; Huang B; Li W; Xiang Y; Peng X; Ming J; Wu X; Zhang Y; Xu Q; Liu W; Kou X; Zhao Y; He W; Li C; Chen B; Li Y; Wang Q; Ma J; Yin Q; Kee K; Meng A; Gao S; Xu F; Na J; Xie W
    Nature; 2016 Sep; 537(7621):553-557. PubMed ID: 27626382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone demethylases and cancer.
    Kampranis SC; Tsichlis PN
    Adv Cancer Res; 2009; 102():103-69. PubMed ID: 19595308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early-embryonic culture and manipulation could affect genomic imprinting.
    Feil R
    Trends Mol Med; 2001 Jun; 7(6):245-6. PubMed ID: 11419412
    [No Abstract]   [Full Text] [Related]  

  • 10. Dnmt3L and the establishment of maternal genomic imprints.
    Bourc'his D; Xu GL; Lin CS; Bollman B; Bestor TH
    Science; 2001 Dec; 294(5551):2536-9. PubMed ID: 11719692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells.
    Chen Z; Yin Q; Inoue A; Zhang C; Zhang Y
    Sci Adv; 2019 Dec; 5(12):eaay7246. PubMed ID: 32064321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal methylation of KCNQ1OT1 and differential methylation of H19 imprinting control regions in human ICSI embryos.
    Khoueiry R; Ibala-Romdhane S; Al-Khtib M; Blachère T; Lornage J; Guérin JF; Lefèvre A
    Zygote; 2013 May; 21(2):129-38. PubMed ID: 22300968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron.
    Jepsen K; Solum D; Zhou T; McEvilly RJ; Kim HJ; Glass CK; Hermanson O; Rosenfeld MG
    Nature; 2007 Nov; 450(7168):415-9. PubMed ID: 17928865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular biology. Long-sought enzyme found, revealing new gene switch on histones.
    Couzin J
    Science; 2004 Dec; 306(5705):2171. PubMed ID: 15618494
    [No Abstract]   [Full Text] [Related]  

  • 15. Loss of H3K27me3 Imprinting in Somatic Cell Nuclear Transfer Embryos Disrupts Post-Implantation Development.
    Matoba S; Wang H; Jiang L; Lu F; Iwabuchi KA; Wu X; Inoue K; Yang L; Press W; Lee JT; Ogura A; Shen L; Zhang Y
    Cell Stem Cell; 2018 Sep; 23(3):343-354.e5. PubMed ID: 30033120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense noncoding RNA promoter regulates the timing of de novo methylation of an imprinting control region.
    Guseva N; Mondal T; Kanduri C
    Dev Biol; 2012 Jan; 361(2):403-11. PubMed ID: 22119056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic imprinting: a mammalian epigenetic discovery model.
    Barlow DP
    Annu Rev Genet; 2011; 45():379-403. PubMed ID: 21942369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution and function of genomic imprinting in plants.
    Rodrigues JA; Zilberman D
    Genes Dev; 2015 Dec; 29(24):2517-31. PubMed ID: 26680300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3-Cre and complete exclusion of Dnmt3b by chimera formation.
    Kaneda M; Hirasawa R; Chiba H; Okano M; Li E; Sasaki H
    Genes Cells; 2010 Mar; 15(3):169-79. PubMed ID: 20132320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetics. Reprogramming X inactivation.
    Clerc P; Avner P
    Science; 2000 Nov; 290(5496):1518-9. PubMed ID: 11185510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.