These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19759628)

  • 41. Enhanced transmission through rough-metal surfaces.
    Gu ZH; Dummer RS; Maradudin AA; McGurn AR; Mendez ER
    Appl Opt; 1991 Oct; 30(28):4094-102. PubMed ID: 20706508
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast method to compute scattering by a buried object under a randomly rough surface: PILE combined with FB-SA.
    Bourlier C; Kubické G; Déchamps N
    J Opt Soc Am A Opt Image Sci Vis; 2008 Apr; 25(4):891-902. PubMed ID: 18382488
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Scattering by one-dimensional random rough metallic surfaces in a conical configuration.
    Luna RE; Méndez ER
    Opt Lett; 1995 Apr; 20(7):657-8. PubMed ID: 19859287
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Investigation of surface topology of printed nanoparticle layers using wide-angle low-Q scattering.
    Jonah EO; Härting M; Gullikson E; Aquila A; Britton DT
    J Synchrotron Radiat; 2014 May; 21(Pt 3):547-53. PubMed ID: 24763644
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fourth- and higher-order small-perturbation solution for scattering from dielectric rough surfaces.
    Demir MA; Johnson JT
    J Opt Soc Am A Opt Image Sci Vis; 2003 Dec; 20(12):2330-7. PubMed ID: 14686512
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling of light scattering in different regimes of surface roughness.
    Schröder S; Duparré A; Coriand L; Tünnermann A; Penalver DH; Harvey JE
    Opt Express; 2011 May; 19(10):9820-35. PubMed ID: 21643239
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scattering of near normal incidence SH waves by sinusoidal and rough surfaces in 3-D: comparison to the scalar wave approximation.
    Jarvis AJ; Cegla FB
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jul; 61(7):1179-90. PubMed ID: 24960707
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dielectric thin films for maximized absorption with standard quality black surfaces.
    Giovannini H; Amra C
    Appl Opt; 1998 Jan; 37(1):103-5. PubMed ID: 18268566
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Applicability of the effective medium approximation in the ellipsometry of randomly micro-rough solid surfaces.
    Liu Y; Qiu J; Liu L
    Opt Express; 2018 Jun; 26(13):16560-16571. PubMed ID: 30119484
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Separation of surface and bulk reflectance by absorption of bulk scattered light.
    Johansson N; Neuman M; Andersson M; Edström P
    Appl Opt; 2013 Jul; 52(19):4749-54. PubMed ID: 23842275
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scattering-reduction effect with overcoated rough surfaces: theory and experiment.
    Giovannini H; Amra C
    Appl Opt; 1997 Aug; 36(22):5574-9. PubMed ID: 18259383
    [TBL] [Abstract][Full Text] [Related]  

  • 52. K speckle: space-time correlation function of doubly scattered light in an imaging system.
    Li D; Kelly DP; Sheridan JT
    J Opt Soc Am A Opt Image Sci Vis; 2013 May; 30(5):969-78. PubMed ID: 23695330
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method.
    Li J; Guo LX; Jiao YC; Li K
    Opt Express; 2011 Jan; 19(2):1091-100. PubMed ID: 21263648
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analytic height correlation function of rough surfaces derived from light scattering.
    Zamani M; Shafiei F; Fazeli SM; Downer MC; Jafari GR
    Phys Rev E; 2016 Oct; 94(4-1):042809. PubMed ID: 27841612
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calculating Rayleigh scattering from particulate surfaces and saturn's rings.
    Wolff M; Dollfus A
    Appl Opt; 1990 Apr; 29(10):1496-502. PubMed ID: 20563033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Angular scattering from optical interference coatings: scalar scattering predictions and measurements.
    Zavislan JM
    Appl Opt; 1991 Jun; 30(16):2224-44. PubMed ID: 20700199
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scattering of electromagnetic waves from 3D multilayer random rough surfaces based on the second-order small perturbation method: energy conservation, reflectivity, and emissivity.
    Sanamzadeh M; Tsang L; Johnson JT; Burkholder RJ; Tan S
    J Opt Soc Am A Opt Image Sci Vis; 2017 Mar; 34(3):395-409. PubMed ID: 28248366
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces.
    Hyde MW; Schmidt JD; Havrilla MJ
    Opt Express; 2009 Nov; 17(24):22138-53. PubMed ID: 19997460
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical properties of ultrafine line and space polymeric nanogratings coated with metal and metal-dielectric-metal thin films.
    Leong ES; Wu S; Zhang N; Loh WW; Khoo EH; Si GY; Dai HT; Liu YJ
    Nanotechnology; 2014 Feb; 25(5):055203. PubMed ID: 24406796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of surface-plasmon-polaritons-assisted interference imaging by using silver film with rough surface.
    Shi S; Zhang Z; He M; Li X; Yang J; Du J
    Opt Express; 2010 May; 18(10):10685-93. PubMed ID: 20588921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.