These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19759637)

  • 1. Adaptive fringe-locked running hologram in photorefractive crystals.
    Frejlich J; Garcia PM; Cescato L
    Opt Lett; 1989 Nov; 14(21):1210-2. PubMed ID: 19759637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive fringe-locked running hologram in photorefractive crystals: errata.
    Frejlich J; Garcia PM; Cescato L
    Opt Lett; 1990 Nov; 15(21):1247. PubMed ID: 19771056
    [No Abstract]   [Full Text] [Related]  

  • 3. Electric-field multiplexing of volume holograms in paraelectric crystals.
    Balberg M; Razvag M; Refaeli E; Agranat AJ
    Appl Opt; 1998 Feb; 37(5):841-7. PubMed ID: 18268661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-wave mixing and energy transfer in Bi(12) SiO(20) crystals: application to image amplification and vibration analysis.
    Huignard JP; Marrakehi A
    Opt Lett; 1981 Dec; 6(12):622-4. PubMed ID: 19710792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective erasure of speckle-multiplexed holograms by use of a double Mach-Zehnder interferometric arrangement.
    Bunsen M; Furuta H; Okamoto A
    Appl Opt; 2006 Sep; 45(27):7035-42. PubMed ID: 16946782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Avoiding hologram bending in photorefractive crystals.
    Freschi AA; Garcia PM; Rasnik I; Frejlich J; Buse K
    Opt Lett; 1996 Jan; 21(2):152-4. PubMed ID: 19865335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of applied fields on the Bragg condition and the diffraction efficiency in photorefractive crystals.
    De Vré R; Jeganathan M; Wilde JP; Hesselink L
    Opt Lett; 1994 Jun; 19(12):910-2. PubMed ID: 19844485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexed permanent and real time holographic recording in photorefractive BSO.
    Vainos NA; Clapham SL; Eason RW
    Appl Opt; 1989 Oct; 28(20):4381-5. PubMed ID: 20555880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation.
    Frejlich J; de Oliveira I; Arizmendi L; Carrascosa M
    Appl Opt; 2007 Jan; 46(2):227-33. PubMed ID: 17268568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-fidelity image amplification and phase conjugation in photorefractive Bi(12)SiO(20) crystals.
    Vainos NA; Gower MC
    Opt Lett; 1991 Mar; 16(6):363-5. PubMed ID: 19773934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonstationary amplification of the holographic recording in doped BSO crystals: a base for photorefractive incoherent-to-coherent optical conversion.
    Miteva M; Dushkina N; Gospodinov M
    Appl Opt; 1995 Jul; 34(20):4083-5. PubMed ID: 21052232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide angular aperture holograms in photorefractive crystals by the use of orthogonally polarized write and read beams.
    Sarto AW; Wagner KH; Weverka RT; Weaver S; Walge EK
    Appl Opt; 1996 Oct; 35(29):5765-75. PubMed ID: 21127587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-transfer measurement and determination of the phase shift between the holographic grating and the fringe pattern in photorefractive materials.
    Kapoor R; Moghbel M; Venkateswarlu P
    Opt Lett; 1993 May; 18(9):696-8. PubMed ID: 19802243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Holographic interferometry using anisotropic self-diffraction in Bi(12)SiO(20).
    Troth RC; Dainty JC
    Opt Lett; 1991 Jan; 16(1):53-5. PubMed ID: 19773835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Off-Bragg analysis of the diffraction efficiency of transmission photorefractive holograms.
    Nonaka K
    Appl Opt; 1997 Jul; 36(20):4792-800. PubMed ID: 18259280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise and sensitivity characteristics of Bi(12)SiO(20) crystals for optimization of a real-time self-diffraction holographic interferometer.
    Troth RC; Sochava SL; Stepanov SI
    Appl Opt; 1991 Sep; 30(26):3756-61. PubMed ID: 20706454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophotochromic gratings in photorefractive Bi(12)TiO(20) crystals.
    Kamshilin AA; Frejlich J; Garcia PM
    Appl Opt; 1992 Apr; 31(11):1787-93. PubMed ID: 20720819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interference-term real-time measurement for self-stabilized two-wave mixing in photorefractive crystals.
    Santos PA; Cescato L; Frejlich J
    Opt Lett; 1988 Nov; 13(11):1014-6. PubMed ID: 19746110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonvolatile photorefractive holograms in LiNbO(3):CuCe crystals.
    Liu Y; Liu L; Zhou C; Xu L
    Opt Lett; 2000 Jun; 25(12):908-10. PubMed ID: 18064223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nondestructive readout of a photorefractive hologram by phase-conjugate copying in a one-crystal configuration.
    Ito T; Okamoto A; Funakoshi H; Sato K
    Appl Opt; 2007 May; 46(13):2443-52. PubMed ID: 17429455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.