These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19759682)

  • 1. Influence of alternating field frequency on enhanced photorefractive gain in two-beam coupling.
    Besson C; Jonathan JM; Villing A; Pauliat G; Roosen G
    Opt Lett; 1989 Dec; 14(24):1359-61. PubMed ID: 19759682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of subharmonics on two-wave gain in Bi(12)SiO(20) under alternating electric fields.
    Grunnet-Jepsen A; Solymar L; Kwak CH
    Opt Lett; 1994 Sep; 19(17):1299-301. PubMed ID: 19855500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric-field dependence of phase-conjugate wave-front reflectivity in reduced KNbO(3) and Bi(12)GeO(20).
    Günter PN
    Opt Lett; 1982 Jan; 7(1):10-2. PubMed ID: 19710806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gain enhancement by signal beam chopping for two-wave coupling with a BSO crystal.
    Kawata Y; Kawata S; Minami S
    Appl Opt; 1991 Jun; 30(18):2453-7. PubMed ID: 20700231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive Bi(12)SiO(20) crystals.
    Rajbenbach H; Huignard JP; Refrégier P
    Opt Lett; 1984 Dec; 9(12):558-60. PubMed ID: 19721667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced two-beam mixing gain in photorefractive GaAs using alternating electric fields.
    Kumar J; Albanese G; Steier WH; Ziari M
    Opt Lett; 1987 Feb; 12(2):120-2. PubMed ID: 19738812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition between superluminal and subluminal light propagation in photorefractive Bi12SiO20 crystals.
    Bo F; Zhang G; Xu J
    Opt Express; 2005 Oct; 13(20):8198-203. PubMed ID: 19498849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking novelty filter at 780 nm based on a photorefractive polymer in a two-beam coupling geometry.
    Hendrickx E; Van Steenwinckel D; Persoons A
    Appl Opt; 2001 Mar; 40(9):1412-6. PubMed ID: 18357130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beam coupling in undoped GaAs at 1.06 microm using the photorefractive effect.
    Klein MB
    Opt Lett; 1984 Aug; 9(8):350-2. PubMed ID: 19721595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientational dependence of photorefractive two-beam coupling in InP:Fe.
    Strait J; Reed JD; Kukhtarev NV
    Opt Lett; 1990 Feb; 15(4):209-11. PubMed ID: 19759759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for determining the two-beam coupling gain coefficients of photorefractive crystals.
    Dou SX; Kim J; Yi S; Yi J; Cha S; Shin SH; Zhu Y; Ye P
    Opt Lett; 1998 May; 23(10):753-5. PubMed ID: 18087331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of photorefractive vectorial wave coupling in cubic crystals.
    Sturman BI; Podivilov EV; Ringhofer KH; Shamonina E; Kamenov VP; Nippolainen E; Prokofiev VV; Kamshilin AA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):3332-52. PubMed ID: 11970148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solutions for vectorial beam coupling under ac field in cubic photorefractive crystals.
    Sturman BI; Filippov OS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036613. PubMed ID: 14524918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model for resonant intensity dependence of photorefractive two-wave mixing in InP:Fe.
    Picoli G; Gravey P; Ozkul C
    Opt Lett; 1989 Dec; 14(24):1362-4. PubMed ID: 19759683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bistable ring resonator utilizing saturable photorefractive gain and loss.
    Lininger DM; Martin PJ; Anderson DZ
    Opt Lett; 1989 Jul; 14(13):697-9. PubMed ID: 19752940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Logarithmic output from cascaded two-beam coupling interactions in photorefractive crystals.
    Eason RW; James SW
    Appl Opt; 1990 Aug; 29(23):3362-4. PubMed ID: 20567420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of high gain in a liquid-crystal panel with photoconducting polymeric layers.
    Bartkiewicz S; Miniewicz A; Kajzar FO; Zagórska M
    Appl Opt; 1998 Oct; 37(29):6871-7. PubMed ID: 18301503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientational photorefractive holograms in porphyrin:Zn-doped nematic liquid crystals.
    Kim EJ; Yang HR; Lee SJ; Kim GY; Kwak CH
    Opt Express; 2008 Oct; 16(22):17329-41. PubMed ID: 18958016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiwave coupling in a high-gain photorefractive polymer.
    Matsushita K; Banerjee PP; Ozaki S; Miyazaki D
    Opt Lett; 1999 May; 24(9):593-5. PubMed ID: 18073793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-wave mixing and energy transfer in Bi(12) SiO(20) crystals: application to image amplification and vibration analysis.
    Huignard JP; Marrakehi A
    Opt Lett; 1981 Dec; 6(12):622-4. PubMed ID: 19710792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.