These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 19760685)
1. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Liu Z; Fan AC; Rakhra K; Sherlock S; Goodwin A; Chen X; Yang Q; Felsher DW; Dai H Angew Chem Int Ed Engl; 2009; 48(41):7668-72. PubMed ID: 19760685 [No Abstract] [Full Text] [Related]
2. Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors. Yan Y; Wang R; Hu Y; Sun R; Song T; Shi X; Yin S Drug Deliv; 2018 Nov; 25(1):1607-1616. PubMed ID: 30348025 [TBL] [Abstract][Full Text] [Related]
3. Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Murakami T; Sawada H; Tamura G; Yudasaka M; Iijima S; Tsuchida K Nanomedicine (Lond); 2008 Aug; 3(4):453-63. PubMed ID: 18694307 [TBL] [Abstract][Full Text] [Related]
4. Glycopolymer decorated multiwalled carbon nanotubes for dual targeted breast cancer therapy. Omurtag Ozgen PS; Atasoy S; Zengin Kurt B; Durmus Z; Yigit G; Dag A J Mater Chem B; 2020 Apr; 8(15):3123-3137. PubMed ID: 32211704 [TBL] [Abstract][Full Text] [Related]
5. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Wen S; Liu H; Cai H; Shen M; Shi X Adv Healthc Mater; 2013 Sep; 2(9):1267-76. PubMed ID: 23447549 [TBL] [Abstract][Full Text] [Related]
6. Graft and diblock copolymer multifunctional micelles for cancer chemotherapy and imaging. Tsai HC; Chang WH; Lo CL; Tsai CH; Chang CH; Ou TW; Yen TC; Hsiue GH Biomaterials; 2010 Mar; 31(8):2293-301. PubMed ID: 20042234 [TBL] [Abstract][Full Text] [Related]
7. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Talelli M; Iman M; Varkouhi AK; Rijcken CJ; Schiffelers RM; Etrych T; Ulbrich K; van Nostrum CF; Lammers T; Storm G; Hennink WE Biomaterials; 2010 Oct; 31(30):7797-804. PubMed ID: 20673684 [TBL] [Abstract][Full Text] [Related]
8. Study of the efficiency of doxorubicin deposited in microparticles from resorbable Bioplastotaneā¢ on laboratory animals with Ehrlich's solid carcinoma. Shishatskaya EI; Goreva AV; Kuzmina AM Bull Exp Biol Med; 2013 Apr; 154(6):773-7. PubMed ID: 23658921 [TBL] [Abstract][Full Text] [Related]
9. Review: doxorubicin delivery systems based on chitosan for cancer therapy. Tan ML; Choong PF; Dass CR J Pharm Pharmacol; 2009 Feb; 61(2):131-42. PubMed ID: 19178759 [TBL] [Abstract][Full Text] [Related]
10. The performance of doxorubicin encapsulated in chitosan-dextran sulphate microparticles in an osteosarcoma model. Tan ML; Friedhuber AM; Dunstan DE; Choong PF; Dass CR Biomaterials; 2010 Jan; 31(3):541-51. PubMed ID: 19836833 [TBL] [Abstract][Full Text] [Related]
11. Poly(amidoamine) conjugates containing doxorubicin bound via an acid-sensitive linker. Lavignac N; Nicholls JL; Ferruti P; Duncan R Macromol Biosci; 2009 May; 9(5):480-7. PubMed ID: 19016501 [TBL] [Abstract][Full Text] [Related]
12. pH-Responsive single walled carbon nanotube dispersion for target specific release of doxorubicin to cancer cells. Ghosh M; Brahmachari S; Das PK Macromol Biosci; 2014 Dec; 14(12):1795-806. PubMed ID: 25212998 [TBL] [Abstract][Full Text] [Related]
13. In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly(ethylene glycol)-b-polycaprolactone diblock copolymer. Kang YM; Kim GH; Kim JI; Kim DY; Lee BN; Yoon SM; Kim JH; Kim MS Biomaterials; 2011 Jul; 32(20):4556-64. PubMed ID: 21440935 [TBL] [Abstract][Full Text] [Related]
14. The structure-dependent toxicity, pharmacokinetics and anti-tumour activity of HPMA copolymer conjugates in the treatment of solid tumours and leukaemia. Tomalova B; Sirova M; Rossmann P; Pola R; Strohalm J; Chytil P; Cerny V; Tomala J; Kabesova M; Rihova B; Ulbrich K; Etrych T; Kovar M J Control Release; 2016 Feb; 223():1-10. PubMed ID: 26708020 [TBL] [Abstract][Full Text] [Related]
15. Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells. Gu YJ; Cheng J; Jin J; Cheng SH; Wong WT Int J Nanomedicine; 2011; 6():2889-98. PubMed ID: 22131835 [TBL] [Abstract][Full Text] [Related]
16. Stepwise pH/reduction-responsive polymeric conjugates for enhanced drug delivery to tumor. Yang S; Wang Y; Ren Z; Chen M; Chen W; Zhang X Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():234-243. PubMed ID: 29025653 [TBL] [Abstract][Full Text] [Related]
17. Co-delivery of doxorubicin and siRNA using octreotide-conjugated gold nanorods for targeted neuroendocrine cancer therapy. Xiao Y; Jaskula-Sztul R; Javadi A; Xu W; Eide J; Dammalapati A; Kunnimalaiyaan M; Chen H; Gong S Nanoscale; 2012 Nov; 4(22):7185-93. PubMed ID: 23070403 [TBL] [Abstract][Full Text] [Related]
18. On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Lee JH; Chen KJ; Noh SH; Garcia MA; Wang H; Lin WY; Jeong H; Kong BJ; Stout DB; Cheon J; Tseng HR Angew Chem Int Ed Engl; 2013 Apr; 52(16):4384-4388. PubMed ID: 23519915 [No Abstract] [Full Text] [Related]
19. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Lammers T; Subr V; Ulbrich K; Peschke P; Huber PE; Hennink WE; Storm G Biomaterials; 2009 Jul; 30(20):3466-75. PubMed ID: 19304320 [TBL] [Abstract][Full Text] [Related]
20. Payload drug vs. nanocarrier biodegradation by myeloperoxidase- and peroxynitrite-mediated oxidations: pharmacokinetic implications. Seo W; Kapralov AA; Shurin GV; Shurin MR; Kagan VE; Star A Nanoscale; 2015 May; 7(19):8689-94. PubMed ID: 25902750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]