These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19760744)

  • 1. Exploration of chromatic aberration for multiplanar imaging: proof of concept with implications for fast, efficient autofocus.
    Weinigel M; Kellner AL; Price JH
    Cytometry A; 2009 Dec; 75(12):999-1006. PubMed ID: 19760744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths.
    Rucker FJ; Wallman J
    Vision Res; 2008 Sep; 48(19):1980-91. PubMed ID: 18585403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color third-harmonic generation imaging.
    Du Y; Zhuang Z; He J; Liu H; Qiu P; Wang K
    J Biophotonics; 2018 Sep; 11(9):e201800071. PubMed ID: 29770596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast auto-acquisition tomography tilt series by using HD video camera in ultra-high voltage electron microscope.
    Nishi R; Cao M; Kanaji A; Nishida T; Yoshida K; Isakozawa S
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i25. PubMed ID: 25359822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic autofocus for continuous-scanning time-delay-and-integration image acquisition in automated microscopy.
    Bravo-Zanoguera ME; Laris CA; Nguyen LK; Oliva M; Price JH
    J Biomed Opt; 2007; 12(3):034011. PubMed ID: 17614719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional imaging under meridional propagation through a dispersive thick lens based on RGB distributions and defocused planes.
    Bugoffa SG; Chatterjee MR
    J Opt Soc Am A Opt Image Sci Vis; 2023 May; 40(5):969-977. PubMed ID: 37133194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swept-Source-Based Chromatic Confocal Microscopy.
    Jeong D; Park SJ; Jang H; Kim H; Kim J; Kim CS
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33371378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatic confocal microscopy for multi-depth imaging of epithelial tissue.
    Olsovsky C; Shelton R; Carrasco-Zevallos O; Applegate BE; Maitland KC
    Biomed Opt Express; 2013 May; 4(5):732-40. PubMed ID: 23667789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three dimensional analysis of chromatic aberration in diffractive elements with extended depth of focus.
    Mas D; Espinosa J; Perez J; Illueca C
    Opt Express; 2007 Dec; 15(26):17842-54. PubMed ID: 19551079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polychromatic Image Performance of Diffractive Bifocal Intraocular Lenses: Longitudinal Chromatic Aberration and Energy Efficiency.
    Millán MS; Vega F; Ríos-López I
    Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):2021-8. PubMed ID: 27100158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional image sensing by chromatic confocal microscopy.
    Tiziani HJ; Uhde HM
    Appl Opt; 1994 Apr; 33(10):1838-43. PubMed ID: 20885516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-band, 1.9-μm axial resolution full-field optical coherence microscopy over a 530-1700 nm wavelength range using a single camera.
    Federici A; Dubois A
    Opt Lett; 2014 Mar; 39(6):1374-7. PubMed ID: 24690791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber-optic large-depth 3D chromatic confocal endomicroscopy.
    Yang X; Wang Y; Zhang H; Qin H; Wang S; Tong Y; Zhou K; Sun R; Yue S; Chen X; Ding S; Wang P
    Biomed Opt Express; 2022 Jan; 13(1):300-313. PubMed ID: 35154872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple method of acquiring high-quality light fields based on the chromatic aberration of only one defocused image pair.
    Jung GS; Won YH
    Opt Express; 2021 Oct; 29(22):36417-36429. PubMed ID: 34809052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy.
    Gao L; Kester RT; Tkaczyk TS
    Opt Express; 2009 Jul; 17(15):12293-308. PubMed ID: 19654631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based autofocus method enhances image quality in light-sheet fluorescence microscopy.
    Li C; Moatti A; Zhang X; Troy Ghashghaei H; Greenabum A
    Biomed Opt Express; 2021 Aug; 12(8):5214-5226. PubMed ID: 34513252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Multifocal Plane Fourier Ptychographic Microscopy Utilizing a Standard RGB Camera.
    Oh G; Choi H
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Through-Focus Energy Efficiency and Longitudinal Chromatic Aberration of Three Presbyopia-Correcting Intraocular Lenses.
    Millán MS; Vega F
    Transl Vis Sci Technol; 2020 Nov; 9(12):13. PubMed ID: 33240566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-exposure 3D label-free microscopy based on color-multiplexed intensity diffraction tomography.
    Zhou N; Li J; Sun J; Zhang R; Bai Z; Zhou S; Chen Q; Zuo C
    Opt Lett; 2022 Feb; 47(4):969-972. PubMed ID: 35167571
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.