These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19761323)

  • 1. Assessing direction-specific adaptation using the steady-state visual evoked potential: results from EEG source imaging.
    Ales JM; Norcia AM
    J Vis; 2009 Jul; 9(7):8. PubMed ID: 19761323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis.
    Vanni S; Warnking J; Dojat M; Delon-Martin C; Bullier J; Segebarth C
    Neuroimage; 2004 Mar; 21(3):801-17. PubMed ID: 15006647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation.
    Wall MB; Lingnau A; Ashida H; Smith AT
    Eur J Neurosci; 2008 May; 27(10):2747-57. PubMed ID: 18547254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal frequency and direction sensitivities of human visual areas measured using fMRI.
    Singh KD; Smith AT; Greenlee MW
    Neuroimage; 2000 Nov; 12(5):550-64. PubMed ID: 11034862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation to real motion reveals direction-selective interactions between real and implied motion processing.
    Lorteije JA; Kenemans JL; Jellema T; van der Lubbe RH; Lommers MW; van Wezel RJ
    J Cogn Neurosci; 2007 Aug; 19(8):1231-40. PubMed ID: 17650999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropy in the representation of direction preferences in cat area 18.
    Ribot J; Tanaka S; O'Hashi K; Ajima A
    Eur J Neurosci; 2008 May; 27(10):2773-80. PubMed ID: 18489580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature-based attention affects direction-selective fMRI adaptation in hMT+.
    Weigelt S; Singer W; Kohler A
    Cereb Cortex; 2013 Sep; 23(9):2169-78. PubMed ID: 22875866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imagery of a moving object: the role of occipital cortex and human MT/V5+.
    Kaas A; Weigelt S; Roebroeck A; Kohler A; Muckli L
    Neuroimage; 2010 Jan; 49(1):794-804. PubMed ID: 19646536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human MT+ mediates perceptual filling-in during apparent motion.
    Liu T; Slotnick SD; Yantis S
    Neuroimage; 2004 Apr; 21(4):1772-80. PubMed ID: 15050597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroimaging of direction-selective mechanisms for second-order motion.
    Nishida S; Sasaki Y; Murakami I; Watanabe T; Tootell RB
    J Neurophysiol; 2003 Nov; 90(5):3242-54. PubMed ID: 12917391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion direction tuning in human visual cortex.
    Mercier M; Schwartz S; Michel CM; Blanke O
    Eur J Neurosci; 2009 Jan; 29(2):424-34. PubMed ID: 19200244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timing of interactions across the visual field in the human cortex.
    Vanni S; Dojat M; Warnking J; Delon-Martin C; Segebarth C; Bullier J
    Neuroimage; 2004 Mar; 21(3):818-28. PubMed ID: 15006648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direction-specific fMRI adaptation reveals the visual cortical network underlying the "Rotating Snakes" illusion.
    Ashida H; Kuriki I; Murakami I; Hisakata R; Kitaoka A
    Neuroimage; 2012 Jul; 61(4):1143-52. PubMed ID: 22450297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The BOLD fMRI refractory effect is specific to stimulus attributes: evidence from a visual motion paradigm.
    Huettel SA; Obembe OO; Song AW; Woldorff MG
    Neuroimage; 2004 Sep; 23(1):402-8. PubMed ID: 15325388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of large scale biases in decoding of direction-of-motion from high-resolution fMRI data in human early visual cortex.
    Beckett A; Peirce JW; Sanchez-Panchuelo RM; Francis S; Schluppeck D
    Neuroimage; 2012 Nov; 63(3):1623-32. PubMed ID: 22986356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state visually evoked potential correlates of object recognition.
    Kaspar K; Hassler U; Martens U; Trujillo-Barreto N; Gruber T
    Brain Res; 2010 Jul; 1343():112-21. PubMed ID: 20450897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial frequency tuning in human retinotopic visual areas.
    Henriksson L; Nurminen L; Hyvärinen A; Vanni S
    J Vis; 2008 Aug; 8(10):5.1-13. PubMed ID: 19146347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientation-tuned FMRI adaptation in human visual cortex.
    Fang F; Murray SO; Kersten D; He S
    J Neurophysiol; 2005 Dec; 94(6):4188-95. PubMed ID: 16120668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disentangling neural structures for processing of high- and low-speed visual motion.
    Lorteije JA; van Wezel RJ; van der Smagt MJ
    Eur J Neurosci; 2008 May; 27(9):2341-53. PubMed ID: 18445224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opposite dependencies on visual motion coherence in human area MT+ and early visual cortex.
    Händel B; Lutzenberger W; Thier P; Haarmeier T
    Cereb Cortex; 2007 Jul; 17(7):1542-9. PubMed ID: 16940034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.