BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19761569)

  • 1. Feature selection for fMRI-based deception detection.
    Jin B; Strasburger A; Laken SJ; Kozel FA; Johnson KA; George MS; Lu X
    BMC Bioinformatics; 2009 Sep; 10 Suppl 9(Suppl 9):S15. PubMed ID: 19761569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lying in the scanner: covert countermeasures disrupt deception detection by functional magnetic resonance imaging.
    Ganis G; Rosenfeld JP; Meixner J; Kievit RA; Schendan HE
    Neuroimage; 2011 Mar; 55(1):312-9. PubMed ID: 21111834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting-State Functional Network Scale Effects and Statistical Significance-Based Feature Selection in Machine Learning Classification.
    Guo H; Li Y; Mensah GK; Xu Y; Chen J; Xiang J; Chen D
    Comput Math Methods Med; 2019; 2019():9108108. PubMed ID: 31781290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: application to schizophrenia.
    Castro E; Gómez-Verdejo V; Martínez-Ramón M; Kiehl KA; Calhoun VD
    Neuroimage; 2014 Feb; 87():1-17. PubMed ID: 24225489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models.
    Faisan S; Thoraval L; Armspach JP; Metz-Lutz MN; Heitz F
    IEEE Trans Med Imaging; 2005 Feb; 24(2):263-76. PubMed ID: 15707252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classifying spatial patterns of brain activity with machine learning methods: application to lie detection.
    Davatzikos C; Ruparel K; Fan Y; Shen DG; Acharyya M; Loughead JW; Gur RC; Langleben DD
    Neuroimage; 2005 Nov; 28(3):663-8. PubMed ID: 16169252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivoxel pattern analysis for FMRI data: a review.
    Mahmoudi A; Takerkart S; Regragui F; Boussaoud D; Brovelli A
    Comput Math Methods Med; 2012; 2012():961257. PubMed ID: 23401720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of autistic individuals and controls using cross-task characterization of fMRI activity.
    Chanel G; Pichon S; Conty L; Berthoz S; Chevallier C; Grèzes J
    Neuroimage Clin; 2016; 10():78-88. PubMed ID: 26793434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid method for classifying cognitive states from fMRI data.
    Parida S; Dehuri S; Cho SB; Cacha LA; Poznanski RR
    J Integr Neurosci; 2015 Sep; 14(3):355-68. PubMed ID: 26455882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Support vector clustering for brain activation detection.
    Wang D; Shi L; Yeung DS; Heng PA; Wong TT; Tsang EC
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):572-9. PubMed ID: 16685892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-subject brain decoding with multi-task feature selection.
    Wang L; Tang X; Liu W; Peng Y; Gao T; Xu Y
    Biomed Mater Eng; 2014; 24(6):2987-94. PubMed ID: 25227006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.
    Faisan S; Thoraval L; Armspach JP; Foucher JR; Metz-Lutz MN; Heitz F
    Acad Radiol; 2005 Jan; 12(1):25-36. PubMed ID: 15691723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable whole-brain prediction analysis with GraphNet.
    Grosenick L; Klingenberg B; Katovich K; Knutson B; Taylor JE
    Neuroimage; 2013 May; 72():304-21. PubMed ID: 23298747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI.
    Shen H; Wang L; Liu Y; Hu D
    Neuroimage; 2010 Feb; 49(4):3110-21. PubMed ID: 19931396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting stable distributed patterns of brain activation using Gini contrast.
    Langs G; Menze BH; Lashkari D; Golland P
    Neuroimage; 2011 May; 56(2):497-507. PubMed ID: 20709176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief.
    Douglas PK; Harris S; Yuille A; Cohen MS
    Neuroimage; 2011 May; 56(2):544-53. PubMed ID: 21073969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated classification of fMRI data employing trial-based imagery tasks.
    Lee JH; Marzelli M; Jolesz FA; Yoo SS
    Med Image Anal; 2009 Jun; 13(3):392-404. PubMed ID: 19233711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia.
    Castro E; Martínez-Ramón M; Pearlson G; Sui J; Calhoun VD
    Neuroimage; 2011 Sep; 58(2):526-36. PubMed ID: 21723948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.