These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 19761786)
61. Evidence for a feature tracking explanation of why type II plaids move in the vector sum direction at short durations. Bowns L Vision Res; 1996 Nov; 36(22):3685-94. PubMed ID: 8976998 [TBL] [Abstract][Full Text] [Related]
62. A Motion-from-Form Mechanism Contributes to Extracting Pattern Motion from Plaids. Quaia C; Optican LM; Cumming BG J Neurosci; 2016 Apr; 36(14):3903-18. PubMed ID: 27053199 [TBL] [Abstract][Full Text] [Related]
63. Rats spontaneously perceive global motion direction of drifting plaids. Matteucci G; Zattera B; Bellacosa Marotti R; Zoccolan D PLoS Comput Biol; 2021 Sep; 17(9):e1009415. PubMed ID: 34520476 [TBL] [Abstract][Full Text] [Related]
64. Two-stage analysis of the motion of 2-dimensional patterns, what is the first stage? Derrington AM; Badcock DR Vision Res; 1992 Apr; 32(4):691-8. PubMed ID: 1413553 [TBL] [Abstract][Full Text] [Related]
65. Temporal dynamics of motion integration for the initiation of tracking eye movements at ultra-short latencies. Masson GS; Rybarczyk Y; Castet E; Mestre DR Vis Neurosci; 2000; 17(5):753-67. PubMed ID: 11153655 [TBL] [Abstract][Full Text] [Related]
66. An independent effect of spatial frequency on motion integration reveals orientation resolution. Bowns L; Beckett AJ Vision Res; 2010 Jul; 50(15):1445-51. PubMed ID: 20417656 [TBL] [Abstract][Full Text] [Related]
67. Computing feature motion without feature detectors: a model for terminator motion without end-stopped cells. Löffler G; Orbach HS Vision Res; 1999 Feb; 39(4):859-71. PubMed ID: 10341971 [TBL] [Abstract][Full Text] [Related]
68. A Possible Role for End-Stopped V1 Neurons in the Perception of Motion: A Computational Model. Zarei Eskikand P; Kameneva T; Ibbotson MR; Burkitt AN; Grayden DB PLoS One; 2016; 11(10):e0164813. PubMed ID: 27741307 [TBL] [Abstract][Full Text] [Related]
69. Isolating the effect of one-dimensional motion signals on the perceived direction of moving two-dimensional objects. Rubin N; Hochstein S Vision Res; 1993 Jul; 33(10):1385-96. PubMed ID: 8333160 [TBL] [Abstract][Full Text] [Related]
70. Theory of the perceived motion direction of equal-spatial-frequency plaid stimuli. Sperling G; Sun P; Liu D; Lin L Psychol Rev; 2020 Apr; 127(3):305-326. PubMed ID: 32223283 [TBL] [Abstract][Full Text] [Related]
71. Coherence and motion transparency in rigid and nonrigid plaids. Wright MJ; Gurney KN Perception; 1997; 26(5):553-67. PubMed ID: 9488881 [TBL] [Abstract][Full Text] [Related]
72. Psychophysical differences in processing of global motion and form detection and position discrimination. Harvey BM; Braddick OJ J Vis; 2008 Jun; 8(7):14.1-18. PubMed ID: 19146247 [TBL] [Abstract][Full Text] [Related]
73. Computing motion in the primate's visual system. Koch C; Wang HT; Mathur B J Exp Biol; 1989 Sep; 146():115-39. PubMed ID: 2689558 [TBL] [Abstract][Full Text] [Related]
75. The role of second-order motion signals in coherence and transparency. Wilson HR Ciba Found Symp; 1994; 184():227-37; discussion 238-44, 269-71. PubMed ID: 7882756 [TBL] [Abstract][Full Text] [Related]
78. Motion distorts perceived position without awareness of motion. Whitney D Curr Biol; 2005 May; 15(9):R324-6. PubMed ID: 15886084 [No Abstract] [Full Text] [Related]
79. Complex motion perception and its deficits. Vaina LM Curr Opin Neurobiol; 1998 Aug; 8(4):494-502. PubMed ID: 9751663 [TBL] [Abstract][Full Text] [Related]
80. A psychophysically motivated model for two-dimensional motion perception. Wilson HR; Ferrera VP; Yo C Vis Neurosci; 1992 Jul; 9(1):79-97. PubMed ID: 1633129 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]