These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 19761831)
1. Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE. Jonsson A; Nordlund S; Teixeira PF Res Microbiol; 2009 Oct; 160(8):581-4. PubMed ID: 19761831 [TBL] [Abstract][Full Text] [Related]
2. The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity. Zhang Y; Pohlmann EL; Conrad MC; Roberts GP Mol Microbiol; 2006 Jul; 61(2):497-510. PubMed ID: 16762025 [TBL] [Abstract][Full Text] [Related]
3. Reversible adenylylation of glutamine synthetase is dynamically counterbalanced during steady-state growth of Escherichia coli. Okano H; Hwa T; Lenz P; Yan D J Mol Biol; 2010 Dec; 404(3):522-36. PubMed ID: 20887734 [TBL] [Abstract][Full Text] [Related]
4. Diazotrophic Growth Allows Azotobacter vinelandii To Overcome the Deleterious Effects of a Mus F; Tseng A; Dixon R; Peters JW Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28432097 [TBL] [Abstract][Full Text] [Related]
5. The activity of adenylyltransferase in Rhodospirillum rubrum is only affected by alpha-ketoglutarate and unmodified PII proteins, but not by glutamine, in vitro. Jonsson A; Teixeira PF; Nordlund S FEBS J; 2007 May; 274(10):2449-60. PubMed ID: 17419734 [TBL] [Abstract][Full Text] [Related]
6. A novel peroxiredoxin activity is located within the C-terminal end of Rhodospirillum rubrum adenylyltransferase. Jonsson A; Teixeira PF; Nordlund S J Bacteriol; 2008 Jan; 190(1):434-7. PubMed ID: 17951375 [TBL] [Abstract][Full Text] [Related]
7. Functional analysis of GlnE, an essential adenylyl transferase in Mycobacterium tuberculosis. Carroll P; Pashley CA; Parish T J Bacteriol; 2008 Jul; 190(14):4894-902. PubMed ID: 18469098 [TBL] [Abstract][Full Text] [Related]
8. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. Zhang Y; Pohlmann EL; Roberts GP J Bacteriol; 2005 Feb; 187(4):1254-65. PubMed ID: 15687189 [TBL] [Abstract][Full Text] [Related]
9. Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum. Zhang Y; Pohlmann EL; Ludden PW; Roberts GP J Bacteriol; 2000 Feb; 182(4):983-92. PubMed ID: 10648524 [TBL] [Abstract][Full Text] [Related]
10. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense. Van Dommelen A; Spaepen S; Vanderleyden J Res Microbiol; 2009 Apr; 160(3):205-12. PubMed ID: 19366628 [TBL] [Abstract][Full Text] [Related]
11. Light-dependent synthesis of glutamate in Rhodospirillum rubrum. Physiological evidence for ammonia assimilation via the glutamine synthetase and glutamine: 2-oxoglutarate amino-transferase system. Slater JH; Morris I Arch Mikrobiol; 1974 Feb; 95(4):337-46. PubMed ID: 4151925 [No Abstract] [Full Text] [Related]
12. A source of ultrasensitivity in the glutamine response of the bicyclic cascade system controlling glutamine synthetase adenylylation state and activity in Escherichia coli. Jiang P; Ninfa AJ Biochemistry; 2011 Dec; 50(50):10929-40. PubMed ID: 22085244 [TBL] [Abstract][Full Text] [Related]
14. Mutations that alter the covalent modification of glutamine synthetase in Salmonella typhimurium. Bancroft S; Rhee SG; Neumann C; Kustu S J Bacteriol; 1978 Jun; 134(3):1046-55. PubMed ID: 26663 [TBL] [Abstract][Full Text] [Related]
15. Independent transcription of glutamine synthetase (glnA2) and glutamine synthetase adenylyltransferase (glnE) in Mycobacterium bovis and Mycobacterium tuberculosis. Hotter GS; Mouat P; Collins DM Tuberculosis (Edinb); 2008 Sep; 88(5):382-9. PubMed ID: 18440867 [TBL] [Abstract][Full Text] [Related]
16. Deletion of the Gibberella fujikuroi glutamine synthetase gene has significant impact on transcriptional control of primary and secondary metabolism. Teichert S; Schönig B; Richter S; Tudzynski B Mol Microbiol; 2004 Sep; 53(6):1661-75. PubMed ID: 15341646 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen metabolism in Streptomyces coelicolor A3(2): modification of glutamine synthetase I by an adenylyltransferase. Fink D; Falke D; Wohlleben W; Engels A Microbiology (Reading); 1999 Sep; 145 ( Pt 9)():2313-2322. PubMed ID: 10517584 [TBL] [Abstract][Full Text] [Related]
18. [Regulation of glutamine metabolism in Chlorella pyrenoidosa. Mechanisms of regulating the activity of glutamine synthetase during ammonia assimilation]. Akimova NI; Evstigneeva ZG; Kretovich VL Biokhimiia; 1976; 41(7):1306-12. PubMed ID: 11843 [TBL] [Abstract][Full Text] [Related]
19. Purification of P(II) and P(II)-UMP and in vitro studies of regulation of glutamine synthetase in Rhodospirillum rubrum. Johansson M; Nordlund S J Bacteriol; 1999 Oct; 181(20):6524-9. PubMed ID: 10515945 [TBL] [Abstract][Full Text] [Related]
20. Complementation of a pleiotropic Nif-Gln regulatory mutant of Rhodospirillum rubrum by a previously unrecognized Azotobacter vinelandii regulatory locus. Hu CZ; Yoch DC Arch Microbiol; 1990; 154(6):528-35. PubMed ID: 1980582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]