BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1223 related articles for article (PubMed ID: 19762035)

  • 21. Recent advances in the control of morphology and surface chemistry of porous polymer-based monolithic stationary phases and their application in CEC.
    Eeltink S; Svec F
    Electrophoresis; 2007 Jan; 28(1-2):137-47. PubMed ID: 17149783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymeric monolithic stationary phases for capillary electrochromatography.
    Hilder EF; Svec F; Fréchet JM
    Electrophoresis; 2002 Nov; 23(22-23):3934-53. PubMed ID: 12481286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel method to prepare polystyrene-based monolithic columns for chromatographic and electrophoretic separations by microwave irradiation.
    Zhang YP; Ye XW; Tian MK; Qu LB; Choi SH; Gopalan AI; Lee KP
    J Chromatogr A; 2008 Apr; 1188(1):43-9. PubMed ID: 18037422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of porous silicon integrated in liquid chromatography chips.
    Tiggelaar RM; Verdoold V; Eghbali H; Desmet G; Gardeniers JG
    Lab Chip; 2009 Feb; 9(3):456-63. PubMed ID: 19156296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CEC separation of aromatic compounds and proteins on hexylamine-functionalized N-acryloxysuccinimide monoliths.
    Carbonnier B; Guerrouache M; Denoyel R; Millot MC
    J Sep Sci; 2007 Nov; 30(17):3000-10. PubMed ID: 17960848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast separation of low molecular weight analytes on structurally optimized polymeric capillary monoliths.
    Lubbad SH; Buchmeiser MR
    J Chromatogr A; 2010 May; 1217(19):3223-30. PubMed ID: 19932481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast, noninvasive and simultaneous near-infrared spectroscopic characterisation of physicochemical stationary phases' properties: from silica particles towards monoliths.
    Petter CH; Heigl N; Bonn GK; Huck CW
    J Sep Sci; 2008 Aug; 31(14):2541-50. PubMed ID: 18693319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Practical aspects of using methacrylate-ester-based monolithic columns in capillary electrochromatography.
    Eeltink S; Rozing GP; Schoenmakers PJ; Kok WT
    J Chromatogr A; 2006 Mar; 1109(1):74-9. PubMed ID: 16188265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography.
    Grimes BA; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2007 Mar; 1144(1):14-29. PubMed ID: 17126846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Macroporous monolithic chiral stationary phases for capillary electrochromatography: New chiral monomer derived from cinchona alkaloid with enhanced enantioselectivity.
    Lämmerhofer M; Tobler E; Zarbl E; Lindner W; Svec F; Fréchet JM
    Electrophoresis; 2003 Sep; 24(17):2986-99. PubMed ID: 12973802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of sub-micron skeletal monoliths with high capacity for liquid chromatography.
    Yao C; Qi L; Yang G; Wang F
    J Sep Sci; 2010 Mar; 33(4-5):475-83. PubMed ID: 20063358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths.
    Nischang I; Brüggemann O
    J Chromatogr A; 2010 Aug; 1217(33):5389-97. PubMed ID: 20598699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards high capacity latex-coated porous polymer monoliths as ion-exchange stationary phases.
    Hutchinson JP; Hilder EF; Shellie RA; Smith JA; Haddad PR
    Analyst; 2006 Feb; 131(2):215-21. PubMed ID: 16440085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A study of the effects of column porosity on gradient separations of proteins.
    Urban J; Jandera P; Kucerová Z; van Straten MA; Claessens HA
    J Chromatogr A; 2007 Oct; 1167(1):63-75. PubMed ID: 17804002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acrylic-based high internal phase emulsion polymeric monolith for capillary electrochromatography.
    Tunç Y; Gölgelioğlu C; Hasirci N; Ulubayram K; Tuncel A
    J Chromatogr A; 2010 Mar; 1217(10):1654-9. PubMed ID: 20122693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous determination of the micro-, meso-, and macropore size fractions of porous polymers by a combined use of Fourier transform near-infrared diffuse reflection spectroscopy and multivariate techniques.
    Heigl N; Greiderer A; Petter CH; Kolomiets O; Siesler HW; Ulbricht M; Bonn GK; Huck CW
    Anal Chem; 2008 Nov; 80(22):8493-500. PubMed ID: 18847215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shielded stationary phases based on porous polymer monoliths for the capillary electrochromatography of highly basic biomolecules.
    Hilder EF; Svec F; Fréchet JM
    Anal Chem; 2004 Jul; 76(14):3887-92. PubMed ID: 15253621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins.
    Skudas R; Grimes BA; Machtejevas E; Kudirkaite V; Kornysova O; Hennessy TP; Lubda D; Unger KK
    J Chromatogr A; 2007 Mar; 1144(1):72-84. PubMed ID: 17084406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of monolithic columns with target mesopore-size distribution for potential use in size-exclusion chromatography.
    Urban J; Jandera P; Schoenmakers P
    J Chromatogr A; 2007 May; 1150(1-2):279-89. PubMed ID: 17049537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and characterization of lauryl methacrylate-based monolithic microbore column for reversed-phase liquid chromatography.
    Shu S; Kobayashi H; Kojima N; Sabarudin A; Umemura T
    J Chromatogr A; 2011 Aug; 1218(31):5228-34. PubMed ID: 21703629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 62.