BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1223 related articles for article (PubMed ID: 19762035)

  • 41. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption.
    Thommes M; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2008 May; 1191(1-2):57-66. PubMed ID: 18423477
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Towards stationary phases for chromatography on a microchip: molded porous polymer monoliths prepared in capillaries by photoinitiated in situ polymerization as separation media for electrochromatography.
    Yu C; Svec F; Fréchet JM
    Electrophoresis; 2000 Jan; 21(1):120-7. PubMed ID: 10634478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tailoring the morphology of methacrylate ester-based monoliths for optimum efficiency in liquid chromatography.
    Eeltink S; Herrero-Martinez JM; Rozing GP; Schoenmakers PJ; Kok WT
    Anal Chem; 2005 Nov; 77(22):7342-7. PubMed ID: 16285684
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel separation medium spongy monolith for high throughput analyses.
    Watanabe F; Kubo T; Kaya K; Hosoya K
    J Chromatogr A; 2009 Oct; 1216(44):7402-8. PubMed ID: 19577755
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of conditions allowing the synthesis of acrylamide-based monolithic microcolumns for capillary electrochromatography and of factors determining the retention of aromatic compounds on these stationary phases.
    Hoegger D; Freitag R
    Electrophoresis; 2003 Sep; 24(17):2958-72. PubMed ID: 12973799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Poly(cyclooctene)-based monolithic columns for capillary high performance liquid chromatography prepared via ring-opening metathesis polymerization.
    Schlemmer B; Gatschelhofer C; Pieber TR; Sinner FM; Buchmeiser MR
    J Chromatogr A; 2006 Nov; 1132(1-2):124-31. PubMed ID: 16934281
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of ion adsorption on CEC separation of small molecules using hypercrosslinked porous polymer monolithic capillary columns.
    Chen XJ; Dinh NP; Zhao J; Wang YT; Li SP; Svec F
    J Sep Sci; 2012 Jun; 35(12):1502-5. PubMed ID: 22740260
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of hydrothermal treatment on column performance for monolithic silica capillary columns.
    Hara T; Mascotto S; Weidmann C; Smarsly BM
    J Chromatogr A; 2011 Jun; 1218(23):3624-35. PubMed ID: 21546027
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Performance of R-N(R')-R'' functionalised poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) monolithic sorbent for plasmid DNA adsorption.
    Danquah MK; Ho J; Forde GM
    J Sep Sci; 2007 Nov; 30(17):2843-50. PubMed ID: 17960843
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of pore size on the separation of random and block copolymers by interactive liquid chromatography.
    van Hulst M; Schoenmakers P
    J Chromatogr A; 2006 Oct; 1130(1):54-63. PubMed ID: 16919653
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein-doped monolithic silica columns for capillary liquid chromatography prepared by the sol-gel method: applications to frontal affinity chromatography.
    Hodgson RJ; Chen Y; Zhang Z; Tleugabulova D; Long H; Zhao X; Organ M; Brook MA; Brennan JD
    Anal Chem; 2004 May; 76(10):2780-90. PubMed ID: 15144188
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chromatographic selectivity of poly(alkyl methacrylate-co-divinylbenzene) monolithic columns for polar aromatic compounds by pressure-driven capillary liquid chromatography.
    Lin SL; Wang CC; Fuh MR
    Anal Chim Acta; 2016 Oct; 939():117-127. PubMed ID: 27639150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simple capillary flow porometer for characterization of capillary columns containing packed and monolithic beds.
    Fang Y; Tolley HD; Lee ML
    J Chromatogr A; 2010 Oct; 1217(41):6405-12. PubMed ID: 20810116
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of low flow-resistant methacrylate-based monolithic stationary phases of different hydrophobicity and the application to rapid reversed-phase liquid chromatographic separation of alkylbenzenes at high flow rate and elevated temperature.
    Ueki Y; Umemura T; Iwashita Y; Odake T; Haraguchi H; Tsunoda K
    J Chromatogr A; 2006 Feb; 1106(1-2):106-11. PubMed ID: 16443455
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Monolithic bed structure for capillary liquid chromatography.
    Aggarwal P; Tolley HD; Lee ML
    J Chromatogr A; 2012 Jan; 1219():1-14. PubMed ID: 22169193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel zwitterionic polyphosphorylcholine monolithic column for hydrophilic interaction chromatography.
    Jiang Z; Reilly J; Everatt B; Smith NW
    J Chromatogr A; 2009 Mar; 1216(12):2439-48. PubMed ID: 19178914
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pressure-assisted CEC versus CEC using methacrylate-based monolithic columns: influence of the polymerization-mixture composition.
    Tanret I; Mangelings D; Vander Heyden Y
    Electrophoresis; 2008 Nov; 29(22):4463-74. PubMed ID: 19035401
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure and performance of silica-based monolithic HPLC columns.
    Altmaier S; Cabrera K
    J Sep Sci; 2008 Aug; 31(14):2551-9. PubMed ID: 18618471
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.
    Safinia L; Mantalaris A; Bismarck A
    Langmuir; 2006 Mar; 22(7):3235-42. PubMed ID: 16548583
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of fluorinated, monolithic columns for improved chromatographic separations of fluorous-tagged analytes.
    Daley AB; Oleschuk RD
    J Chromatogr A; 2009 Jan; 1216(5):772-80. PubMed ID: 19100552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 62.