BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19762349)

  • 1. Type II topoisomerases--inhibitors, repair mechanisms and mutations.
    Heisig P
    Mutagenesis; 2009 Nov; 24(6):465-9. PubMed ID: 19762349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of nonhomologous DNA end joining, conservative homologous recombination, and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2) in mammalian cells.
    Frankenberg-Schwager M; Becker M; Garg I; Pralle E; Wolf H; Frankenberg D
    Radiat Res; 2008 Dec; 170(6):784-93. PubMed ID: 19138034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionizing radiation and genetic risks XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders.
    Sankaranarayanan K; Wassom JS
    Mutat Res; 2005 Oct; 578(1-2):333-70. PubMed ID: 16084534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells.
    Honma M; Sakuraba M; Koizumi T; Takashima Y; Sakamoto H; Hayashi M
    DNA Repair (Amst); 2007 Jun; 6(6):781-8. PubMed ID: 17296333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells.
    Arnaudeau C; Lundin C; Helleday T
    J Mol Biol; 2001 Apr; 307(5):1235-45. PubMed ID: 11292338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of DNA double-strand break repair pathways in mice.
    Brugmans L; Kanaar R; Essers J
    Mutat Res; 2007 Jan; 614(1-2):95-108. PubMed ID: 16797606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway.
    Brissett NC; Doherty AJ
    Biochem Soc Trans; 2009 Jun; 37(Pt 3):539-45. PubMed ID: 19442248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predisposition to therapy-related acute leukemia with balanced chromosomal translocations does not result from a major constitutive defect in DNA double-strand break end joining.
    Coiteux V; Onclercq-Delic R; Fenaux P; Amor-Guéret M
    Leuk Res; 2007 Mar; 31(3):353-8. PubMed ID: 16890283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Non-mutagenic and mutagenic post-replicative DNA repair in prokaryotic and eukaryotic cells].
    Zhestianikov VD
    Tsitologiia; 2000; 42(9):837-43. PubMed ID: 11077674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of cytotoxicity and DNA damage induced by the topoisomerase II-directed bisdioxopiperazine anti-cancer agent ICRF-187 (dexrazoxane) in yeast and mammalian cells.
    Jensen LH; Dejligbjerg M; Hansen LT; Grauslund M; Jensen PB; Sehested M
    BMC Pharmacol; 2004 Dec; 4():31. PubMed ID: 15575955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells.
    de Campos-Nebel M; Larripa I; González-Cid M
    Mutat Res; 2008 Nov; 646(1-2):8-16. PubMed ID: 18812179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining.
    Rebuzzini P; Khoriauli L; Azzalin CM; Magnani E; Mondello C; Giulotto E
    DNA Repair (Amst); 2005 May; 4(5):546-55. PubMed ID: 15811627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chinese hamster ovary cells resistant to the topoisomerase II catalytic inhibitor ICRF-159: a Tyr49Phe mutation confers high-level resistance to bisdioxopiperazines.
    Sehested M; Wessel I; Jensen LH; Holm B; Oliveri RS; Kenwrick S; Creighton AM; Nitiss JL; Jensen PB
    Cancer Res; 1998 Apr; 58(7):1460-8. PubMed ID: 9537249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA double-strand break repair pathways and cellular tolerance to inhibitors of topoisomerase II.
    Caldecott K; Banks G; Jeggo P
    Cancer Res; 1990 Sep; 50(18):5778-83. PubMed ID: 2168280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemotherapy-related secondary leukemias: A role for DNA repair by error-prone non-homologous end joining in topoisomerase II - Induced chromosomal rearrangements.
    Kantidze OL; Razin SV
    Gene; 2007 Apr; 391(1-2):76-9. PubMed ID: 17234368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-homologous DNA end joining.
    Pastwa E; Błasiak J
    Acta Biochim Pol; 2003; 50(4):891-908. PubMed ID: 14739985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells.
    Saleh-Gohari N; Helleday T
    Nucleic Acids Res; 2004; 32(12):3683-8. PubMed ID: 15252152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair.
    Sallmyr A; Fan J; Rassool FV
    Cancer Lett; 2008 Oct; 270(1):1-9. PubMed ID: 18467025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes.
    Yeeles JT; Dillingham MS
    DNA Repair (Amst); 2010 Mar; 9(3):276-85. PubMed ID: 20116346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a role of vertebrate Rad52 in the repair of topoisomerase II-mediated DNA damage.
    Adachi N; Iiizumi S; Koyama H
    DNA Cell Biol; 2005 Jun; 24(6):388-93. PubMed ID: 15941391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.