These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 19763464)

  • 1. Impedance spectroscopy and optical analysis of single biological cells and organisms in microsystems.
    Gawad S; Holmes D; Benazzi G; Renaud P; Morgan H
    Methods Mol Biol; 2010; 583():149-82. PubMed ID: 19763464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing.
    Gawad S; Schild L; Renaud PH
    Lab Chip; 2001 Sep; 1(1):76-82. PubMed ID: 15100895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic impedance-based flow cytometry.
    Cheung KC; Di Berardino M; Schade-Kampmann G; Hebeisen M; Pierzchalski A; Bocsi J; Mittag A; Tárnok A
    Cytometry A; 2010 Jul; 77(7):648-66. PubMed ID: 20583276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy.
    Valero A; Braschler T; Renaud P
    Lab Chip; 2010 Sep; 10(17):2216-25. PubMed ID: 20664865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations.
    Gawad S; Cheung K; Seger U; Bertsch A; Renaud P
    Lab Chip; 2004 Jun; 4(3):241-51. PubMed ID: 15159786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical sensing systems for microfluidic devices: a review.
    Kuswandi B; Nuriman ; Huskens J; Verboom W
    Anal Chim Acta; 2007 Oct; 601(2):141-55. PubMed ID: 17920386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of microfluidics in biology.
    Holmes D; Gawad S
    Methods Mol Biol; 2010; 583():55-80. PubMed ID: 19763459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics for flow cytometric analysis of cells and particles.
    Huh D; Gu W; Kamotani Y; Grotberg JB; Takayama S
    Physiol Meas; 2005 Jun; 26(3):R73-98. PubMed ID: 15798290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absorption detection of enzymatic reaction using optical microfluidics based intermittent flow microreactor system.
    Chandrasekaran A; Packirisamy M
    IEE Proc Nanobiotechnol; 2006 Dec; 153(6):137-43. PubMed ID: 17187445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser.
    Bragheri F; Ferrara L; Bellini N; Vishnubhatla KC; Minzioni P; Ramponi R; Osellame R; Cristiani I
    J Biophotonics; 2010 Apr; 3(4):234-43. PubMed ID: 20301123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification, characterization and manipulation of Babesia-bovis-infected red blood cells using microfluidics technology.
    Nascimento E; Silva T; Oliva A
    Parassitologia; 2007 May; 49 Suppl 1():45-52. PubMed ID: 17691607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic separation and capture of analytes for single-molecule spectroscopy.
    Kim S; Huang B; Zare RN
    Lab Chip; 2007 Dec; 7(12):1663-5. PubMed ID: 18030384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance spectroscopy using maximum length sequences: application to single cell analysis.
    Gawad S; Sun T; Green NG; Morgan H
    Rev Sci Instrum; 2007 May; 78(5):054301. PubMed ID: 17552843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
    Tung YC; Torisawa YS; Futai N; Takayama S
    Lab Chip; 2007 Nov; 7(11):1497-503. PubMed ID: 17960277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry.
    Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H
    Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photrode optical sensor for electrophysiological monitoring.
    Kingsley SA; Sriram S; Pollick A; Marsh J
    Aviat Space Environ Med; 2003 Nov; 74(11):1215-6. PubMed ID: 14620484
    [No Abstract]   [Full Text] [Related]  

  • 17. Light at work: the use of optical forces for particle manipulation, sorting, and analysis.
    Jonás A; Zemánek P
    Electrophoresis; 2008 Dec; 29(24):4813-51. PubMed ID: 19130566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip.
    Wiklund M; Günther C; Lemor R; Jäger M; Fuhr G; Hertz HM
    Lab Chip; 2006 Dec; 6(12):1537-44. PubMed ID: 17203158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optically driven pump for microfluidics.
    Leach J; Mushfique H; di Leonardo R; Padgett M; Cooper J
    Lab Chip; 2006 Jun; 6(6):735-9. PubMed ID: 16738723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic investigation into the electrical properties of single HeLa cells via impedance measurements and COMSOL simulations.
    Wang MH; Jang LS
    Biosens Bioelectron; 2009 May; 24(9):2830-5. PubMed ID: 19286365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.