These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 1976384)

  • 1. Periplasmic metabolism of glutamate and aspartate by intact Bradyrhizobium japonicum bacteroids.
    Streeter JG; Salminen SO
    Biochim Biophys Acta; 1990 Sep; 1035(3):257-65. PubMed ID: 1976384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of glutamate in the respiratory metabolism of Bradyrhizobium japonicum bacteroids.
    Salminen SO; Streeter JG
    J Bacteriol; 1987 Feb; 169(2):495-9. PubMed ID: 2879829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bradyrhizobium japonicum does not require alpha-ketoglutarate dehydrogenase for growth on succinate or malate.
    Green LS; Emerich DW
    J Bacteriol; 1997 Jan; 179(1):194-201. PubMed ID: 8981998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of active versus passive uptake of metabolites by Rhizobium japonicum bacteroids.
    Reibach PH; Streeter JG
    J Bacteriol; 1984 Jul; 159(1):47-52. PubMed ID: 6203891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeling of Carbon Pools in Bradyrhizobium japonicum and Rhizobium leguminosarum bv viciae Bacteroids following Incubation of Intact Nodules with CO(2).
    Salminen SO; Streeter JG
    Plant Physiol; 1992 Oct; 100(2):597-604. PubMed ID: 16653034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of amino acid formation during palmitate oxidation in rat brain mitochondria.
    Kawamura N
    Neurochem Res; 1989 Jan; 14(1):9-15. PubMed ID: 2565541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons.
    Palaiologos G; Hertz L; Schousboe A
    Neurochem Res; 1989 Apr; 14(4):359-66. PubMed ID: 2569674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catabolism of alpha-ketoglutarate by a sucA mutant of Bradyrhizobium japonicum: evidence for an alternative tricarboxylic acid cycle.
    Green LS; Li Y; Emerich DW; Bergersen FJ; Day DA
    J Bacteriol; 2000 May; 182(10):2838-44. PubMed ID: 10781553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate dehydrogenase and a proposed glutamate-aspartate pathway for citrate synthesis in rat ventral prostate.
    Franklin RB; Costello LC
    J Urol; 1984 Dec; 132(6):1239-43. PubMed ID: 6150122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAD-Malic Enzyme Affects Nitrogen Fixing Activity of Bradyrhizobium japonicum USDA 110 Bacteroids in Soybean Nodules.
    Dao TV; Nomura M; Hamaguchi R; Kato K; Itakura M; Minamisawa K; Sinsuwongwat S; Le HT; Kaneko T; Tabata S; Tajima S
    Microbes Environ; 2008; 23(3):215-20. PubMed ID: 21558711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamine, glutamate, and other possible regulators of alpha-ketoglutarate and malate uptake by synaptic terminals.
    Shank RP; Campbell GL
    J Neurochem; 1984 Apr; 42(4):1162-9. PubMed ID: 6142092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A succinate transport mutant of Bradyrhizobium japonicum forms ineffective nodules on soybeans.
    el-Din AK
    Can J Microbiol; 1992 Mar; 38(3):230-4. PubMed ID: 1393826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine 70 fine-tunes the catalytic efficiency of aspartate aminotransferase.
    Toney MD; Kirsch JF
    Biochemistry; 1991 Jul; 30(30):7456-61. PubMed ID: 1677269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of free malonate on the utilization of glutamate by rat brain mitochondria.
    Koeppen AH; Riley KM
    J Neurochem; 1987 May; 48(5):1509-15. PubMed ID: 2881982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate.
    Palaiologos G; Hertz L; Schousboe A
    J Neurochem; 1988 Jul; 51(1):317-20. PubMed ID: 2898006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transport of L-cysteinesulfinate in rat liver mitochondria.
    Palmieri F; Stipani I; Iacobazzi V
    Biochim Biophys Acta; 1979 Aug; 555(3):531-46. PubMed ID: 486467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The function of shuttle systems of liver extramitochondrial hydrogen transport in experimental atherosclerosis].
    Gil'miyairova FN; Radomskaya VM
    Vopr Med Khim; 1975; 21(5):476-80. PubMed ID: 3020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sites of action of glucagon and other Ca2+ mobilizing hormones on the malate aspartate cycle.
    Strzelecki T; Strzelecka D; Koch CD; LaNoue KF
    Arch Biochem Biophys; 1988 Jul; 264(1):310-20. PubMed ID: 2899419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart.
    Wiesner RJ; Kreutzer U; Rösen P; Grieshaber MK
    Biochim Biophys Acta; 1988 Oct; 936(1):114-23. PubMed ID: 2902879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.