These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1976384)

  • 41. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gluconeogenesis in the kidney cortex. Effects of D-malate and amino-oxyacetate.
    Rognstad R; Katz J
    Biochem J; 1970 Feb; 116(3):483-91. PubMed ID: 5435692
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of specific aminotransferases in de novo glutamate synthesis and redox shuttling in the retina.
    LaNoue KF; Berkich DA; Conway M; Barber AJ; Hu LY; Taylor C; Hutson S
    J Neurosci Res; 2001 Dec; 66(5):914-22. PubMed ID: 11746419
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Histochemical localization of aspartate aminotransferase activity in the hippocampal formation and in peripheral ganglia of the rat with special reference to the glutamate transmitter metabolism.
    Schmidt W; Wolf G
    J Hirnforsch; 1984; 25(5):505-10. PubMed ID: 6150058
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Effect of glutamic acid on the anaerobic formation of ATP in the heart muscle].
    Pisarenko OI; Solomatina ES; Ivanov VE; Studneva IM
    Biokhimiia; 1984 Dec; 49(12):2019-25. PubMed ID: 6151856
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 13C NMR study of transamination during acetate utilization by Saccharomyces cerevisiae.
    den Hollander JA; Behar KL; Shulman RG
    Proc Natl Acad Sci U S A; 1981 May; 78(5):2693-7. PubMed ID: 7019909
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetic studies of chicken and turkey liver mitochondrial aspartate aminotransferase.
    Cascante M; Cortés A
    Biochem J; 1988 Mar; 250(3):805-12. PubMed ID: 2898936
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mitochondrial transmembrane proton electrochemical potential, di- and tricarboxylate distribution and the poise of the malate-aspartate cycle in the intact myocardium.
    Kauppinen RA; Hiltunen JK; Hassinen IE
    Adv Exp Med Biol; 1986; 194():331-41. PubMed ID: 2875626
    [No Abstract]   [Full Text] [Related]  

  • 49. Aspartate aminotransferase of Pediococcus cerevisiae.
    Galas E; Turkiewicz M
    Acta Microbiol Pol; 1977; 26(1):65-78. PubMed ID: 67756
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lack of carbon substrate repression of uptake hydrogenase activity in Bradyrhizobium japonicum SR.
    van Berkum P; Maier RJ
    J Bacteriol; 1988 Apr; 170(4):1962-4. PubMed ID: 3350794
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of the glutamate dehydrogenase reaction in furnishing aspartate nitrogen for urea synthesis: studies in perfused rat liver with 15N.
    Nissim I; Horyn O; Luhovyy B; Lazarow A; Daikhin Y; Nissim I; Yudkoff M
    Biochem J; 2003 Nov; 376(Pt 1):179-88. PubMed ID: 12935293
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of conformationally restricted alpha-ketoglutarate analogues as substrates of dehydrogenases and aminotransferases.
    Denton TT; Thompson CM; Cooper AJ
    Anal Biochem; 2001 Nov; 298(2):265-74. PubMed ID: 11700982
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aspartate aminotransferase catalyzed oxygen exchange with solvent from oxygen-18-enriched alpha-ketoglutarate: evidence for slow exchange of enzyme-bound water.
    McLeish MJ; Julin DA; Kirsch JF
    Biochemistry; 1989 May; 28(9):3821-5. PubMed ID: 2568851
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bilirubin inhibition of enzymes involved in the mitochondrial malate-aspartate shuttle.
    McLoughlin DJ; Howell ML
    Biochim Biophys Acta; 1987 Aug; 893(1):7-12. PubMed ID: 3607043
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Methotrexate: studies on cellular metabolism. IV. Effect on the mitochondrial oxidation of cytosolic-reducing equivalents in HeLa cells.
    Bastos MT; Oliveria MB; Campello AP; Klüppel ML
    Cell Biochem Funct; 1990 Oct; 8(4):199-203. PubMed ID: 2272117
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biosynthesis of amino acids from sucrose and Krebs cycle metabolites by Rhizobium lupini bacteroids.
    Kretovich WL; Kariakina TI; Kazakova OV; Sidelnikova LI; Kaloshina GS; Shaposhnikov GL
    Mol Cell Biochem; 1983; 51(1):61-6. PubMed ID: 6855750
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
    Randle PJ; England PJ; Denton RM
    Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study.
    Vauclare P; Bligny R; Gout E; Widmer F
    FEMS Microbiol Lett; 2013 Jun; 343(1):49-56. PubMed ID: 23480054
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fate of Nodule-Specific Polysaccharide Produced by Bradyrhizobium japonicum Bacteroids.
    Streeter JG; Peters NK; Salminen SO; Pladys D; Zhaohua P
    Plant Physiol; 1995 Mar; 107(3):857-864. PubMed ID: 12228408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolism of C-labeled photosynthate and distribution of enzymes of glucose metabolism in soybean nodules.
    Reibach PH; Streeter JG
    Plant Physiol; 1983 Jul; 72(3):634-40. PubMed ID: 16663058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.