These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 19763846)
1. Reduction of bromate by biogenic sulfide produced during microbial sulfur disproportionation. Chairez M; Luna-Velasco A; Field JA; Ju X; Sierra-Alvarez R Biodegradation; 2010 Apr; 21(2):235-44. PubMed ID: 19763846 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of microbial bromate reduction in a hydrogen-oxidizing, denitrifying biofilm reactor. Downing LS; Nerenberg R Biotechnol Bioeng; 2007 Oct; 98(3):543-50. PubMed ID: 17405178 [TBL] [Abstract][Full Text] [Related]
3. Reduction of bromate to bromide coupled to acetate oxidation by anaerobic mixed microbial cultures. van Ginkel CG; van Haperen AM; van der Togt B Water Res; 2005 Jan; 39(1):59-64. PubMed ID: 15607164 [TBL] [Abstract][Full Text] [Related]
4. Evidence of specialized bromate-reducing bacteria in a hollow fiber membrane biofilm reactor. Martin KJ; Downing LS; Nerenberg R Water Sci Technol; 2009; 59(10):1969-74. PubMed ID: 19474491 [TBL] [Abstract][Full Text] [Related]
5. Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Ju X; Sierra-Alvarez R; Field JA; Byrnes DJ; Bentley H; Bentley R Chemosphere; 2008 Mar; 71(1):114-22. PubMed ID: 17988714 [TBL] [Abstract][Full Text] [Related]
6. Reduction of produced elementary sulfur in denitrifying sulfide removal process. Zhou X; Liu L; Chen C; Ren N; Wang A; Lee DJ Appl Microbiol Biotechnol; 2011 May; 90(3):1129-36. PubMed ID: 21286712 [TBL] [Abstract][Full Text] [Related]
7. Effect of initial sulfide concentration on sulfide and phenol oxidation under denitrifying conditions. Beristain-Cardoso R; Texier AC; Sierra-Alvarez R; Razo-Flores E; Field JA; Gómez J Chemosphere; 2009 Jan; 74(2):200-5. PubMed ID: 18990426 [TBL] [Abstract][Full Text] [Related]
9. Effect of sulfide on nitrate reduction in mixed methanogenic cultures. Tugtas AE; Pavlostathis SG Biotechnol Bioeng; 2007 Aug; 97(6):1448-59. PubMed ID: 17238206 [TBL] [Abstract][Full Text] [Related]
10. Reduction of bromate in groundwater with an ex situ suspended growth bioreactor. Butler R; Godley AR; Lake R; Lytton L; Cartmell E Water Sci Technol; 2005; 52(9):265-73. PubMed ID: 16445197 [TBL] [Abstract][Full Text] [Related]
11. Reducing bromate formation with H(+)-form high silica zeolites during ozonation of bromide-containing water: Effectiveness and mechanisms. Zhang T; Hou P; Qiang Z; Lu X; Wang Q Chemosphere; 2011 Jan; 82(4):608-12. PubMed ID: 21093888 [TBL] [Abstract][Full Text] [Related]
12. Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur. Sipma J; Janssen AJ; Pol LW; Lettinga G Biotechnol Bioeng; 2003 Apr; 82(1):1-11. PubMed ID: 12569619 [TBL] [Abstract][Full Text] [Related]
13. Acceleration of the Fe(III)EDTA(-) reduction rate in BioDeNO(x) reactors by dosing electron mediating compounds. Maas Pv; Brink Pv; Klapwijk B; Lens P Chemosphere; 2009 Apr; 75(2):243-9. PubMed ID: 18561978 [TBL] [Abstract][Full Text] [Related]
14. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor. van den Bosch PL; van Beusekom OC; Buisman CJ; Janssen AJ Biotechnol Bioeng; 2007 Aug; 97(5):1053-63. PubMed ID: 17216660 [TBL] [Abstract][Full Text] [Related]
15. Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur. Ju X; Field JA; Sierra-Alvarez R; Salazar M; Bentley H; Bentley R Biotechnol Bioeng; 2007 Apr; 96(6):1073-82. PubMed ID: 17009322 [TBL] [Abstract][Full Text] [Related]
16. Complete bromate and nitrate reduction using hydrogen as the sole electron donor in a rotating biofilm-electrode reactor. Zhong Y; Li X; Yang Q; Wang D; Yao F; Li X; Zhao J; Xu Q; Zhang C; Zeng G J Hazard Mater; 2016 Apr; 307():82-90. PubMed ID: 26775102 [TBL] [Abstract][Full Text] [Related]
17. Cometabolic reduction of bromate by a mixed culture of microorganisms using hydrogen gas in a gas-lift reactor. van Ginkel CG; Middelhuis BJ; Spijk F; Abma WR J Ind Microbiol Biotechnol; 2005 Jan; 32(1):1-6. PubMed ID: 15765250 [TBL] [Abstract][Full Text] [Related]
18. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Satoh H; Odagiri M; Ito T; Okabe S Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714 [TBL] [Abstract][Full Text] [Related]
19. Remediation of bromate-contaminated groundwater in an ex situ fixed-film bioreactor. Butler R; Ehrenberg S; Godley AR; Lake R; Lytton L; Cartmell E Sci Total Environ; 2006 Jul; 366(1):12-20. PubMed ID: 16464489 [TBL] [Abstract][Full Text] [Related]
20. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Kaksonen AH; Franzmann PD; Puhakka JA Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]