These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 19763956)
1. Microfluidic techniques for the analysis of bacterial chemotaxis. Englert DL; Jayaraman A; Manson MD Methods Mol Biol; 2009; 571():1-23. PubMed ID: 19763956 [TBL] [Abstract][Full Text] [Related]
2. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621 [TBL] [Abstract][Full Text] [Related]
3. A hydrogel-based microfluidic device for the studies of directed cell migration. Cheng SY; Heilman S; Wasserman M; Archer S; Shuler ML; Wu M Lab Chip; 2007 Jun; 7(6):763-9. PubMed ID: 17538719 [TBL] [Abstract][Full Text] [Related]
4. Microfluidics for bacterial chemotaxis. Ahmed T; Shimizu TS; Stocker R Integr Biol (Camb); 2010 Nov; 2(11-12):604-29. PubMed ID: 20967322 [TBL] [Abstract][Full Text] [Related]
5. Bacterial chemotaxis on SlipChip. Shen C; Xu P; Huang Z; Cai D; Liu SJ; Du W Lab Chip; 2014 Aug; 14(16):3074-80. PubMed ID: 24968180 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient. Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268 [TBL] [Abstract][Full Text] [Related]
7. Diversity in bacterial chemotactic responses and niche adaptation. Miller LD; Russell MH; Alexandre G Adv Appl Microbiol; 2009; 66():53-75. PubMed ID: 19203648 [TBL] [Abstract][Full Text] [Related]
8. A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis. Si G; Yang W; Bi S; Luo C; Ouyang Q Lab Chip; 2012 Apr; 12(7):1389-94. PubMed ID: 22361931 [TBL] [Abstract][Full Text] [Related]
9. Bacterial chemotaxis transverse to axial flow in a microfluidic channel. Lanning LM; Ford RM; Long T Biotechnol Bioeng; 2008 Jul; 100(4):653-63. PubMed ID: 18306417 [TBL] [Abstract][Full Text] [Related]
10. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels. Choi E; Chang HK; Lim CY; Kim T; Park J Lab Chip; 2012 Oct; 12(20):3968-75. PubMed ID: 22907568 [TBL] [Abstract][Full Text] [Related]
11. Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Tindall MJ; Maini PK; Porter SL; Armitage JP Bull Math Biol; 2008 Aug; 70(6):1570-607. PubMed ID: 18642047 [TBL] [Abstract][Full Text] [Related]
12. Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis assays. Kim M; Kim T Anal Chem; 2010 Nov; 82(22):9401-9. PubMed ID: 20979359 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic device for analyzing preferential chemotaxis and chemoreceptor sensitivity of bacterial cells toward carbon sources. Kim M; Kim SH; Lee SK; Kim T Analyst; 2011 Aug; 136(16):3238-43. PubMed ID: 21716994 [TBL] [Abstract][Full Text] [Related]
15. Investigation of bacterial chemotaxis in flow-based microfluidic devices. Englert DL; Manson MD; Jayaraman A Nat Protoc; 2010 May; 5(5):864-72. PubMed ID: 20431532 [TBL] [Abstract][Full Text] [Related]
16. Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Englert DL; Manson MD; Jayaraman A Appl Environ Microbiol; 2009 Jul; 75(13):4557-64. PubMed ID: 19411425 [TBL] [Abstract][Full Text] [Related]
17. Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell. Tindall MJ; Porter SL; Maini PK; Gaglia G; Armitage JP Bull Math Biol; 2008 Aug; 70(6):1525-69. PubMed ID: 18642048 [TBL] [Abstract][Full Text] [Related]
18. A microfluidic device for quantifying bacterial chemotaxis in stable concentration gradients. Englert DL; Manson MD; Jayaraman A J Vis Exp; 2010 Apr; (38):. PubMed ID: 20404797 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic chip for detecting the expression of green fluorescent protein in Bacillus subtilis. Dong H; Fu J; Li Y; Jiang J Sheng Wu Gong Cheng Xue Bao; 2009 Jul; 25(7):1077-81. PubMed ID: 19835151 [TBL] [Abstract][Full Text] [Related]
20. Transverse chemotactic migration of bacteria from high to low permeability regions in a dual permeability microfluidic device. Singh R; Olson MS Environ Sci Technol; 2012 Mar; 46(6):3188-95. PubMed ID: 22332941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]