These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19764212)

  • 1. Assessment of nickel contamination in lakes using the phantom midge Chaoborus as a biomonitor.
    Ponton DE; Hare L
    Environ Sci Technol; 2009 Sep; 43(17):6529-34. PubMed ID: 19764212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel dynamics in the lakewater metal biomonitor Chaoborus.
    Ponton DE; Hare L
    Aquat Toxicol; 2010 Jan; 96(1):37-43. PubMed ID: 19846223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular metal partitioning in larvae of the insect Chaoborus collected along an environmental metal exposure gradient (Cd, Cu, Ni and Zn).
    Rosabal M; Hare L; Campbell PG
    Aquat Toxicol; 2012 Sep; 120-121():67-78. PubMed ID: 22647479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relating selenium concentrations in a planktivore to selenium speciation in lakewater.
    Ponton DE; Hare L
    Environ Pollut; 2013 May; 176():254-60. PubMed ID: 23454587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallothionein-like metal-binding protein in the biomonitor Chaoborus: occurrence and relationship to ambient metal concentrations in lakes.
    Croteau MN; Hare L; Campbell PG; Couillard Y
    Environ Toxicol Chem; 2002 Apr; 21(4):737-41. PubMed ID: 11951946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal and spatial variation in the amount of cadmium in the phantom midge larvae (Chaoborus spp.).
    Groulx GR; Lasenby DC
    Arch Environ Contam Toxicol; 1992 Oct; 23(3):370-4. PubMed ID: 1456783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal (Ag, Cd, Cu, Ni, Tl, and Zn) Binding to Cytosolic Biomolecules in Field-Collected Larvae of the Insect Chaoborus.
    Rosabal M; Mounicou S; Hare L; Campbell PG
    Environ Sci Technol; 2016 Mar; 50(6):3247-55. PubMed ID: 26886407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting methylmercury biomagnification by a widespread aquatic invertebrate predator, the phantom midge larvae Chaoborus.
    Le Jeune AH; Bourdiol F; Aldamman L; Perron T; Amyot M; Pinel-Alloul B
    Environ Pollut; 2012 Jun; 165():100-8. PubMed ID: 22420993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of humic substances on the speciation and bioavailability of dissolved mercury and methylmercury, measured as uptake by Chaoborus larvae and loss by volatilization.
    Sjöblom A; Meili M; Sundbom M
    Sci Total Environ; 2000 Oct; 261(1-3):115-24. PubMed ID: 11036983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saturation of ecosystems with toxic metals in Sudbury basin, Ontario, Canada.
    Nriagu JO; Wong HK; Lawson G; Daniel P
    Sci Total Environ; 1998 Nov; 223(2-3):99-117. PubMed ID: 9861730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bioavailability model predicting the toxicity of nickel to rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas) in synthetic and natural waters.
    Deleebeeck NM; De Schamphelaere KA; Janssen CR
    Ecotoxicol Environ Saf; 2007 May; 67(1):1-13. PubMed ID: 17174394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of free/labile concentrations of trace metals in Athabasca oil sands region streams (Alberta, Canada) using diffusive gradient in thin films and a thermodynamic equilibrium model.
    Zhu Y; Guéguen C
    Environ Pollut; 2016 Dec; 219():1140-1147. PubMed ID: 27638457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced metals concentrations of water, sediment and hyalella azteca from lakes in the vicinity of the sudbury metal smelters, Ontario, Canada.
    Shuhaimi-Othman M; Pascoe D; Borgmann U; Norwood WP
    Environ Monit Assess; 2006 Jun; 117(1-3):27-44. PubMed ID: 16917696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper and nickel speciation in mine effluents by combination of two independent techniques.
    Chakraborty P; Zhao J; Chakrabarti CL
    Anal Chim Acta; 2009 Mar; 636(1):70-6. PubMed ID: 19231358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relating metal exposure and chemical speciation to trace metal accumulation in aquatic insects under natural field conditions.
    De Jonge M; Lofts S; Bervoets L; Blust R
    Sci Total Environ; 2014 Oct; 496():11-21. PubMed ID: 25051425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aluminium speciation in streams and lakes of the UK Acid Waters Monitoring Network, modelled with WHAM.
    Tipping E; Carter HT
    Sci Total Environ; 2011 Mar; 409(8):1550-8. PubMed ID: 21277614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trace metal levels in chironomid larvae and sediments from a Bolivian river: impact of mining activities.
    Bervoets L; Solis D; Romero AM; Damme PA; Ollevier F
    Ecotoxicol Environ Saf; 1998 Nov; 41(3):275-83. PubMed ID: 9799579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UVR sensitivity of Chaoborus larvae.
    Persaud AD; Yan ND
    Ambio; 2003 Apr; 32(3):219-24. PubMed ID: 12839199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Chaoborus pump: Migrating phantom midge larvae sustain hypolimnetic oxygen deficiency and nutrient internal loading in lakes.
    Tang KW; Flury S; Grossart HP; McGinnis DF
    Water Res; 2017 Oct; 122():36-41. PubMed ID: 28587914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ speciation of Ni and Zn in freshwaters: comparison between DGT measurements and speciation models.
    Zhang H
    Environ Sci Technol; 2004 Mar; 38(5):1421-7. PubMed ID: 15046343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.