These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 19764224)
1. Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. Lee I; Mackeyev Y; Cho M; Li D; Kim JH; Wilson LJ; Alvarez PJ Environ Sci Technol; 2009 Sep; 43(17):6604-10. PubMed ID: 19764224 [TBL] [Abstract][Full Text] [Related]
2. Visible light sensitized inactivation of MS-2 bacteriophage by a cationic amine-functionalized C60 derivative. Cho M; Lee J; Mackeyev Y; Wilson LJ; Alvarez PJ; Hughes JB; Kim JH Environ Sci Technol; 2010 Sep; 44(17):6685-91. PubMed ID: 20687548 [TBL] [Abstract][Full Text] [Related]
3. Environmental implications and applications of carbon nanomaterials in water treatment. Chae SR; Hotze EM; Badireddy AR; Lin S; Kim JO; Wiesner MR Water Sci Technol; 2013; 67(11):2582-6. PubMed ID: 23752392 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of C60 photoreactivity in water: fate of triplet state and radical anion and production of reactive oxygen species. Lee J; Yamakoshi Y; Hughes JB; Kim JH Environ Sci Technol; 2008 May; 42(9):3459-64. PubMed ID: 18522134 [TBL] [Abstract][Full Text] [Related]
5. Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase. Li Y; Niu J; Shang E; Crittenden JC Environ Sci Technol; 2015 Jan; 49(2):965-73. PubMed ID: 25536151 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water. Hotze EM; Labille J; Alvarez P; Wiesner MR Environ Sci Technol; 2008 Jun; 42(11):4175-80. PubMed ID: 18589984 [TBL] [Abstract][Full Text] [Related]
7. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Brunet L; Lyon DY; Hotze EM; Alvarez PJ; Wiesner MR Environ Sci Technol; 2009 Jun; 43(12):4355-60. PubMed ID: 19603646 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of bacteriophage inactivation via singlet oxygen generation in UV illuminated fullerol suspensions. Hotze EM; Badireddy AR; Chellam S; Wiesner MR Environ Sci Technol; 2009 Sep; 43(17):6639-45. PubMed ID: 19764229 [TBL] [Abstract][Full Text] [Related]
9. Inactivation of bacteriophages via photosensitization of fullerol nanoparticles. Badireddy AR; Hotze EM; Chellam S; Alvarez P; Wiesner MR Environ Sci Technol; 2007 Sep; 41(18):6627-32. PubMed ID: 17948818 [TBL] [Abstract][Full Text] [Related]
10. Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation. Lee J; Fortner JD; Hughes JB; Kim JH Environ Sci Technol; 2007 Apr; 41(7):2529-35. PubMed ID: 17438811 [TBL] [Abstract][Full Text] [Related]
11. Effect of encapsulating agents on dispersion status and photochemical reactivity of C60 in the aqueous phase. Lee J; Kim JH Environ Sci Technol; 2008 Mar; 42(5):1552-7. PubMed ID: 18441802 [TBL] [Abstract][Full Text] [Related]
12. Are silicone-supported [C60]-fullerenes an alternative to Ru(II) polypyridyls for photodynamic solar water disinfection? Manjón F; Santana-Magaña M; García-Fresnadillo D; Orellana G Photochem Photobiol Sci; 2014 Feb; 13(2):397-406. PubMed ID: 24395285 [TBL] [Abstract][Full Text] [Related]
13. Fullerol-sensitized production of reactive oxygen species in aqueous solution. Pickering KD; Wiesner MR Environ Sci Technol; 2005 Mar; 39(5):1359-65. PubMed ID: 15787378 [TBL] [Abstract][Full Text] [Related]
14. The Overlooked Photochemistry of Iodine in Aqueous Suspensions of Fullerene Derivatives. Kamat M; Moor K; Langlois G; Chen M; Parker KM; McNeill K; Snow SD ACS Nano; 2022 May; 16(5):8309-8317. PubMed ID: 35533084 [TBL] [Abstract][Full Text] [Related]
15. Photochemical and photophysical properties of sequentially functionalized fullerenes in the aqueous phase. Snow SD; Lee J; Kim JH Environ Sci Technol; 2012 Dec; 46(24):13227-34. PubMed ID: 23151050 [TBL] [Abstract][Full Text] [Related]
16. Enhanced photoinduced electron-transfer reduction of Li(+)@C60 in comparison with C60. Kawashima Y; Ohkubo K; Fukuzumi S J Phys Chem A; 2012 Sep; 116(36):8942-8. PubMed ID: 22913766 [TBL] [Abstract][Full Text] [Related]
17. Singlet oxygen generation from Li⁺@C⁺₆₀ nano-aggregates dispersed by laser irradiation in aqueous solution. Ohkubo K; Kohno N; Yamada Y; Fukuzumi S Chem Commun (Camb); 2015 May; 51(38):8082-5. PubMed ID: 25869351 [TBL] [Abstract][Full Text] [Related]
18. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO Mac Mahon J; Pillai SC; Kelly JM; Gill LW J Photochem Photobiol B; 2017 May; 170():79-90. PubMed ID: 28399477 [TBL] [Abstract][Full Text] [Related]
19. Biological applications of hydrophilic C60 derivatives (hC60s)- a structural perspective. Zhu X; Sollogoub M; Zhang Y Eur J Med Chem; 2016 Jun; 115():438-52. PubMed ID: 27049677 [TBL] [Abstract][Full Text] [Related]
20. Differential photoactivity of aqueous [C60] and [C70] fullerene aggregates. Moor KJ; Snow SD; Kim JH Environ Sci Technol; 2015 May; 49(10):5990-8. PubMed ID: 25950275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]