BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19764227)

  • 1. The inhibition of Pb(IV) oxide formation in chlorinated water by orthophosphate.
    Lytle DA; Schock MR; Scheckel K
    Environ Sci Technol; 2009 Sep; 43(17):6624-31. PubMed ID: 19764227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early phase effects of silicate and orthophosphate on lead (Pb) corrosion scale development and Pb release.
    Gao Y; Trueman BF; Gagnon GA
    J Environ Manage; 2022 Nov; 321():115947. PubMed ID: 35977436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of water chemistry on the dissolution rate of the lead corrosion product hydrocerussite.
    Noel JD; Wang Y; Giammar DE
    Water Res; 2014 May; 54():237-46. PubMed ID: 24576699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal and morphological phase transformation of Pb(II) to Pb(IV) in chlorinated water.
    Lytle DA; White C; Nadagouda MN; Worrall A
    J Hazard Mater; 2009 Jun; 165(1-3):1234-8. PubMed ID: 19081184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of PbO2 formation kinetics from the chlorination of Pb(II) carbonate solids via direct PbO2 measurement.
    Zhang Y; Lin YP
    Environ Sci Technol; 2011 Mar; 45(6):2338-44. PubMed ID: 21322551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of lead(IV) oxides from lead(II) compounds.
    Wang Y; Xie Y; Li W; Wang Z; Giammar DE
    Environ Sci Technol; 2010 Dec; 44(23):8950-6. PubMed ID: 21047060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of orthophosphate as a corrosion inhibitor in chloraminated solutions containing tetravalent lead corrosion product PbO2.
    Ng DQ; Strathmann TJ; Lin YP
    Environ Sci Technol; 2012 Oct; 46(20):11062-9. PubMed ID: 22958199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of Pb(II)/Pb(IV) solid phases with chlorine and their effects on lead release.
    Liu H; Korshin GV; Ferguson JF
    Environ Sci Technol; 2009 May; 43(9):3278-84. PubMed ID: 19534147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of lead(IV) oxide (PbO2) reductive dissolution: role of lead(II) adsorption and surface speciation.
    Wang Y; Wu J; Wang Z; Terenyi A; Giammar DE
    J Colloid Interface Sci; 2013 Jan; 389(1):236-43. PubMed ID: 23062963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Pb(II) defects in the mechanism of dissolution of plattnerite (β-PbO2) in water under depleting chlorine conditions.
    Guo D; Robinson C; Herrera JE
    Environ Sci Technol; 2014 Nov; 48(21):12525-32. PubMed ID: 25137639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: pH control on mineral precipitation.
    McBride MB; Kelch SE; Schmidt MP; Sherpa S; Martinez CE; Aristilde L
    Environ Sci Process Impacts; 2019 Apr; 21(4):738-747. PubMed ID: 30895974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of residual disinfectants on the redox speciation of lead(ii)/(iv) minerals in drinking water distribution systems.
    Avasarala S; Orta J; Schaefer M; Abernathy M; Ying S; Liu H
    Environ Sci (Camb); 2021 Feb; 7(2):357-366. PubMed ID: 34522388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of orthophosphate on lead release from pipe scale in high pH, low alkalinity water.
    Bae Y; Pasteris JD; Giammar DE
    Water Res; 2020 Jun; 177():115764. PubMed ID: 32305699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pH and carbonate concentration on dissolution rates of the lead corrosion product PbO(2).
    Xie Y; Wang Y; Singhal V; Giammar DE
    Environ Sci Technol; 2010 Feb; 44(3):1093-9. PubMed ID: 20063875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential reversal and the effects of flow pattern on galvanic corrosion of lead.
    Arnold RB; Edwards M
    Environ Sci Technol; 2012 Oct; 46(20):10941-7. PubMed ID: 22900550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemistry of free chlorine and monochloramine and its relevance to the presence of Pb in drinking water.
    Rajasekharan VV; Clark BN; Boonsalee S; Switzer JA
    Environ Sci Technol; 2007 Jun; 41(12):4252-7. PubMed ID: 17626421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Manganese in Accelerating the Oxidation of Pb(II) Carbonate Solids to Pb(IV) Oxide at Drinking Water Conditions.
    Pan W; Pan C; Bae Y; Giammar D
    Environ Sci Technol; 2019 Jun; 53(12):6699-6707. PubMed ID: 31120740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of lead corrosion scales formed during drinking water distribution and their potential influence on the release of lead and other contaminants.
    Kim EJ; Herrera JE
    Environ Sci Technol; 2010 Aug; 44(16):6054-61. PubMed ID: 20704199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of stable lead (II) orthophosphate nanoparticle suspensions.
    Lytle DA; Formal C; Doré E; Muhlen C; Harmon S; Williams D; Triantafyllidou S; Pham M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(13):1504-1512. PubMed ID: 32960136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and distribution of vanadinite (Pb5(V5+O4)3Cl) in lead pipe corrosion by-products.
    Gerke TL; Scheckel KG; Schock MR
    Environ Sci Technol; 2009 Jun; 43(12):4412-8. PubMed ID: 19603655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.