These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19764229)

  • 1. Mechanisms of bacteriophage inactivation via singlet oxygen generation in UV illuminated fullerol suspensions.
    Hotze EM; Badireddy AR; Chellam S; Wiesner MR
    Environ Sci Technol; 2009 Sep; 43(17):6639-45. PubMed ID: 19764229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of bacteriophages via photosensitization of fullerol nanoparticles.
    Badireddy AR; Hotze EM; Chellam S; Alvarez P; Wiesner MR
    Environ Sci Technol; 2007 Sep; 41(18):6627-32. PubMed ID: 17948818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteriophage inactivation by UV-A illuminated fullerenes: role of nanoparticle-virus association and biological targets.
    Badireddy AR; Budarz JF; Chellam S; Wiesner MR
    Environ Sci Technol; 2012 Jun; 46(11):5963-70. PubMed ID: 22545948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the oxidation of organic compounds by aqueous suspensions of photosensitized hydroxylated-C60 fullerene aggregates.
    Chae SR; Hotze EM; Wiesner MR
    Environ Sci Technol; 2009 Aug; 43(16):6208-13. PubMed ID: 19746715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.
    Hotze EM; Labille J; Alvarez P; Wiesner MR
    Environ Sci Technol; 2008 Jun; 42(11):4175-80. PubMed ID: 18589984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.
    Brunet L; Lyon DY; Hotze EM; Alvarez PJ; Wiesner MR
    Environ Sci Technol; 2009 Jun; 43(12):4355-60. PubMed ID: 19603646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fullerol-sensitized production of reactive oxygen species in aqueous solution.
    Pickering KD; Wiesner MR
    Environ Sci Technol; 2005 Mar; 39(5):1359-65. PubMed ID: 15787378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems.
    Lee I; Mackeyev Y; Cho M; Li D; Kim JH; Wilson LJ; Alvarez PJ
    Environ Sci Technol; 2009 Sep; 43(17):6604-10. PubMed ID: 19764224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of hydroxylated fullerene (fullerol) in water by zinc: reaction and hemiketal product characterization.
    Wu J; Alemany LB; Li W; Petrie L; Welker C; Fortner JD
    Environ Sci Technol; 2014 Jul; 48(13):7384-92. PubMed ID: 24892381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Overlooked Photochemistry of Iodine in Aqueous Suspensions of Fullerene Derivatives.
    Kamat M; Moor K; Langlois G; Chen M; Parker KM; McNeill K; Snow SD
    ACS Nano; 2022 May; 16(5):8309-8317. PubMed ID: 35533084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells.
    Roberts JE; Wielgus AR; Boyes WK; Andley U; Chignell CF
    Toxicol Appl Pharmacol; 2008 Apr; 228(1):49-58. PubMed ID: 18234258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport.
    Chae SR; Badireddy AR; Farner Budarz J; Lin S; Xiao Y; Therezien M; Wiesner MR
    ACS Nano; 2010 Sep; 4(9):5011-8. PubMed ID: 20707347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of carbon nanomaterials fullerene C₆₀ and fullerol C₆₀(OH)₁₈₋₂₂ on gills of fish Cyprinus carpio (Cyprinidae) exposed to ultraviolet radiation.
    Socoowski Britto R; Garcia ML; Martins da Rocha A; Flores JA; Pinheiro MV; Monserrat JM; Ferreira JL
    Aquat Toxicol; 2012 Jun; 114-115():80-7. PubMed ID: 22417764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidative fullerol promotes osteogenesis of human adipose-derived stem cells.
    Yang X; Li CJ; Wan Y; Smith P; Shang G; Cui Q
    Int J Nanomedicine; 2014; 9():4023-31. PubMed ID: 25187705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of fullerol to human serum albumin: spectroscopic and electrochemical approach.
    Zhang MF; Xu ZQ; Ge YS; Jiang FL; Liu Y
    J Photochem Photobiol B; 2012 Mar; 108():34-43. PubMed ID: 22244345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fullerol in human lens and retinal pigment epithelial cells: time domain fluorescence spectroscopy and imaging.
    Taroni P; D'Andrea C; Valentini G; Cubeddu R; Hu DN; Roberts JE
    Photochem Photobiol Sci; 2011 Jun; 10(6):904-10. PubMed ID: 21298184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, spectroscopic properties and photodynamic activity of porphyrin-fullerene C60 dyads with application in the photodynamic inactivation of Staphylococcus aureus.
    Ballatore MB; Spesia MB; Milanesio ME; Durantini EN
    Eur J Med Chem; 2014 Aug; 83():685-94. PubMed ID: 25010938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells.
    Wielgus AR; Zhao B; Chignell CF; Hu DN; Roberts JE
    Toxicol Appl Pharmacol; 2010 Jan; 242(1):79-90. PubMed ID: 19800903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiviral activity of gilvocarcin V plus UVA radiation.
    Lytle CD; Wagner SJ; Prodouz KN
    Photochem Photobiol; 1993 Dec; 58(6):818-21. PubMed ID: 8310002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of vitamins to UVB and UVA radiation generates singlet oxygen.
    Knak A; Regensburger J; Maisch T; Bäumler W
    Photochem Photobiol Sci; 2014 May; 13(5):820-9. PubMed ID: 24691875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.