These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19764264)

  • 1. Use of biocompatible buffers to reduce the concentration overpotential for hydrogen evolution.
    Jeremiasse AW; Hamelers HV; Kleijn JM; Buisman CJ
    Environ Sci Technol; 2009 Sep; 43(17):6882-7. PubMed ID: 19764264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen production in single-chamber microbial electrolysis cell under high applied voltages.
    Cui W; Lu Y; Zeng C; Yao J; Liu G; Luo H; Zhang R
    Sci Total Environ; 2021 Aug; 780():146597. PubMed ID: 34030325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vapor-Fed Cathode Microbial Electrolysis Cells with Closely Spaced Electrodes Enables Greatly Improved Performance.
    Rossi R; Baek G; Logan BE
    Environ Sci Technol; 2022 Jan; 56(2):1211-1220. PubMed ID: 34971515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applied potentials regulate recovery of residual hydrogen from acid-rich effluents: Influence of biocathodic buffer capacity over process performance.
    Nikhil GN; Venkata Mohan S; Swamy YV
    Bioresour Technol; 2015; 188():65-72. PubMed ID: 25736904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen production in microbial reverse-electrodialysis electrolysis cells using a substrate without buffer solution.
    Song YH; Hidayat S; Kim HK; Park JY
    Bioresour Technol; 2016 Jun; 210():56-60. PubMed ID: 26888336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An MEC-MFC-coupled system for biohydrogen production from acetate.
    Sun M; Sheng GP; Zhang L; Xia CR; Mu ZX; Liu XW; Wang HL; Yu HQ; Qi R; Yu T; Yang M
    Environ Sci Technol; 2008 Nov; 42(21):8095-100. PubMed ID: 19031908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High surface area stainless steel brushes as cathodes in microbial electrolysis cells.
    Call DF; Merrill MD; Logan BE
    Environ Sci Technol; 2009 Mar; 43(6):2179-83. PubMed ID: 19368232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced performance of bioelectrochemical hydrogen production using a pH control strategy.
    Ruiz Y; Baeza JA; Guisasola A
    ChemSusChem; 2015 Jan; 8(2):389-97. PubMed ID: 25469743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.
    Call D; Logan BE
    Environ Sci Technol; 2008 May; 42(9):3401-6. PubMed ID: 18522125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exfoliated molybdenum di-sulfide (MoS
    Rozenfeld S; Teller H; Schechter M; Farber R; Krichevski O; Schechter A; Cahan R
    Bioelectrochemistry; 2018 Oct; 123():201-210. PubMed ID: 29807268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic porous materials provide efficient gas-liquid separation to advance hydrogen production in microbial electrolysis cells.
    Zhao N; Liang D; Li X; Meng S; Liu H
    Bioresour Technol; 2021 Oct; 337():125352. PubMed ID: 34098503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balancing Water Dissociation and Current Densities To Enable Sustainable Hydrogen Production with Bipolar Membranes in Microbial Electrolysis Cells.
    Wang X; Rossi R; Yan Z; Yang W; Hickner MA; Mallouk TE; Logan BE
    Environ Sci Technol; 2019 Dec; 53(24):14761-14768. PubMed ID: 31713416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assay Development for Metal-Dependent Enzymes-Influence of Reaction Buffers on Activities and Kinetic Characteristics.
    Forero N; Liu C; Sabbah SG; Loewen MC; Yang TC
    ACS Omega; 2023 Oct; 8(43):40119-40127. PubMed ID: 37929113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen.
    Chae KJ; Choi MJ; Kim KY; Ajayi FF; Chang IS; Kim IS
    Environ Sci Technol; 2009 Dec; 43(24):9525-30. PubMed ID: 20000551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell.
    Villano M; Ralo C; Zeppilli M; Aulenta F; Majone M
    Bioelectrochemistry; 2016 Feb; 107():1-6. PubMed ID: 26342333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms.
    Fan Y; Hu H; Liu H
    Environ Sci Technol; 2007 Dec; 41(23):8154-8. PubMed ID: 18186352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Buffer-dependent pH sensitivity of the fluorescent chloride-indicator dye SPQ.
    Vasseur M; Frangne R; Alvarado F
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C27-31. PubMed ID: 8381589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica.
    Lusk BG; Parameswaran P; Popat SC; Rittmann BE; Torres CI
    Bioelectrochemistry; 2016 Dec; 112():47-52. PubMed ID: 27450427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization.
    Liang DW; Peng SK; Lu SF; Liu YY; Lan F; Xiang Y
    Bioresour Technol; 2011 Dec; 102(23):10881-5. PubMed ID: 21974881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.