These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 19764747)

  • 1. Impact of nonnatural amino acid mutagenesis on the in vivo function and binding modes of a transcriptional activator.
    Majmudar CY; Lee LW; Lancia JK; Nwokoye A; Wang Q; Wands AM; Wang L; Mapp AK
    J Am Chem Soc; 2009 Oct; 131(40):14240-2. PubMed ID: 19764747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-association of the Gal4 inhibitor protein Gal80 is impaired by Gal3: evidence for a new mechanism in the GAL gene switch.
    Egriboz O; Goswami S; Tao X; Dotts K; Schaeffer C; Pilauri V; Hopper JE
    Mol Cell Biol; 2013 Sep; 33(18):3667-74. PubMed ID: 23858060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein-Protein Interactions.
    Joiner CM; Breen ME; Clayton J; Mapp AK
    Chembiochem; 2017 Jan; 18(2):181-184. PubMed ID: 27966261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence context and crosslinking mechanism affect the efficiency of in vivo capture of a protein-protein interaction.
    Lancia JK; Nwokoye A; Dugan A; Joiner C; Pricer R; Mapp AK
    Biopolymers; 2014 Apr; 101(4):391-7. PubMed ID: 24037947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 9aaTAD Is Exclusive Activation Domain in Gal4.
    Piskacek M; Havelka M; Rezacova M; Knight A
    PLoS One; 2017; 12(1):e0169261. PubMed ID: 28056036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caught in the act: covalent cross-linking captures activator-coactivator interactions in vivo.
    Krishnamurthy M; Dugan A; Nwokoye A; Fung YH; Lancia JK; Majmudar CY; Mapp AK
    ACS Chem Biol; 2011 Dec; 6(12):1321-6. PubMed ID: 21977905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRIC: Capturing the direct cellular targets of promoter-bound transcriptional activators.
    Dugan A; Pricer R; Katz M; Mapp AK
    Protein Sci; 2016 Aug; 25(8):1371-7. PubMed ID: 27213278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between transcriptional activator protein LAC9 and negative regulatory protein GAL80.
    Salmeron JM; Langdon SD; Johnston SA
    Mol Cell Biol; 1989 Jul; 9(7):2950-6. PubMed ID: 2550790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mediator subunit Med15 dictates the conserved "fuzzy" binding mechanism of yeast transcription activators Gal4 and Gcn4.
    Tuttle LM; Pacheco D; Warfield L; Wilburn DB; Hahn S; Klevit RE
    Nat Commun; 2021 Apr; 12(1):2220. PubMed ID: 33850123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene activation by dissociation of an inhibitor from a transcriptional activation domain.
    Jiang F; Frey BR; Evans ML; Friel JC; Hopper JE
    Mol Cell Biol; 2009 Oct; 29(20):5604-10. PubMed ID: 19651897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targets of the Gal4 transcription activator in functional transcription complexes.
    Reeves WM; Hahn S
    Mol Cell Biol; 2005 Oct; 25(20):9092-102. PubMed ID: 16199885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis of growth inhibition by GAL4-L kappa B-alpha in Saccharomyces cerevisiae.
    Morin PJ; Downs JA; Snodgrass AM; Gilmore TD
    Cell Growth Differ; 1995 Jul; 6(7):789-98. PubMed ID: 7547500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast Gal4: a transcriptional paradigm revisited.
    Traven A; Jelicic B; Sopta M
    EMBO Rep; 2006 May; 7(5):496-9. PubMed ID: 16670683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intragenic suppression of Gal3C interaction with Gal80 in the Saccharomyces cerevisiae GAL gene switch.
    Diep CQ; Peng G; Bewley M; Pilauri V; Ropson I; Hopper JE
    Genetics; 2006 Jan; 172(1):77-87. PubMed ID: 16219783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-deficient p-benzoyl-l-phenylalanine derivatives increase covalent chemical capture yields for protein-protein interactions.
    Joiner CM; Breen ME; Mapp AK
    Protein Sci; 2019 Jun; 28(6):1163-1170. PubMed ID: 30977234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GAL4 mutations that separate the transcriptional activation and GAL80-interactive functions of the yeast GAL4 protein.
    Salmeron JM; Leuther KK; Johnston SA
    Genetics; 1990 May; 125(1):21-7. PubMed ID: 2187743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GAL4 interacts with TATA-binding protein and coactivators.
    Melcher K; Johnston SA
    Mol Cell Biol; 1995 May; 15(5):2839-48. PubMed ID: 7739564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced CPT sensitivity of yeast cells and selective relaxation of Ga14 motif-containing DNA by novel Gal4-topoisomerase I fusion proteins.
    Alessandri M; Beretta GL; Ferretti E; Mancia A; Khobta A; Capranico G
    J Mol Biol; 2004 Mar; 337(2):295-305. PubMed ID: 15003448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gal80 dimerization and the yeast GAL gene switch.
    Pilauri V; Bewley M; Diep C; Hopper J
    Genetics; 2005 Apr; 169(4):1903-14. PubMed ID: 15695361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.