These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19764749)

  • 1. Tunability of supramolecular Kagome lattices of magnetic phthalocyanines using graphene-based moire patterns as templates.
    Mao J; Zhang H; Jiang Y; Pan Y; Gao M; Xiao W; Gao HJ
    J Am Chem Soc; 2009 Oct; 131(40):14136-7. PubMed ID: 19764749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the spin magnitude of the magnetic ion in determining the frustration and low-temperature properties of kagome lattices.
    Pati SK; Rao CN
    J Chem Phys; 2005 Dec; 123(23):234703. PubMed ID: 16392940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin frustration in 2D kagomé lattices: a problem for inorganic synthetic chemistry.
    Nocera DG; Bartlett BM; Grohol D; Papoutsakis D; Shores MP
    Chemistry; 2004 Aug; 10(16):3850-9. PubMed ID: 15316993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral kagomé lattice from simple ditopic molecular bricks.
    Schlickum U; Decker R; Klappenberger F; Zoppellaro G; Klyatskaya S; Auwärter W; Neppl S; Kern K; Brune H; Ruben M; Barth JV
    J Am Chem Soc; 2008 Sep; 130(35):11778-82. PubMed ID: 18693686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of chlorine substitution on the self-assembly of zinc phthalocyanine.
    Koudia M; Abel M; Maurel C; Bliek A; Catalin D; Mossoyan M; Mossoyan JC; Porte L
    J Phys Chem B; 2006 May; 110(20):10058-62. PubMed ID: 16706465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed organization of C70 kagome lattice by titanyl phthalocyanine monolayer template.
    Wei Y; Reutt-Robey JE
    J Am Chem Soc; 2011 Oct; 133(39):15232-5. PubMed ID: 21888399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures.
    Lee K; Utama MIB; Kahn S; Samudrala A; Leconte N; Yang B; Wang S; Watanabe K; Taniguchi T; Altoé MVP; Zhang G; Weber-Bargioni A; Crommie M; Ashby PD; Jung J; Wang F; Zettl A
    Sci Adv; 2020 Dec; 6(50):. PubMed ID: 33298449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Template Effect of the Graphene Moiré Lattice on Phthalocyanine Assembly.
    Néel N; Kröger J
    Molecules; 2017 May; 22(5):. PubMed ID: 28467367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring molecular self-assembly of magnetic phthalocyanine molecules on Fe- and Co-intercalated graphene.
    Bazarnik M; Brede J; Decker R; Wiesendanger R
    ACS Nano; 2013 Dec; 7(12):11341-9. PubMed ID: 24279797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-assisted coordination chemistry and self-assembly.
    Lin N; Stepanow S; Vidal F; Kern K; Alam MS; Strömsdörfer S; Dremov V; Müller P; Landa A; Ruben M
    Dalton Trans; 2006 Jun; (23):2794-800. PubMed ID: 16751887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Sample-Wide Electronic Kagome Lattice in Low-Angle Twisted Bilayer Graphene.
    Zheng Q; Hao CY; Zhou XF; Zhao YX; He JQ; He L
    Phys Rev Lett; 2022 Aug; 129(7):076803. PubMed ID: 36018691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral Kagome Lattices from On-Surface Synthesized Molecules.
    Wang T; Fan Q; Feng L; Tao Z; Huang J; Ju H; Xu Q; Hu S; Zhu J
    Chemphyschem; 2017 Dec; 18(23):3329-3333. PubMed ID: 28910515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moiré superstructures of graphene on faceted nickel islands.
    Murata Y; Petrova V; Kappes BB; Ebnonnasir A; Petrov I; Xie YH; Ciobanu CV; Kodambaka S
    ACS Nano; 2010 Nov; 4(11):6509-14. PubMed ID: 20945924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular self-assembly on graphene.
    MacLeod JM; Rosei F
    Small; 2014 Mar; 10(6):1038-49. PubMed ID: 24155272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular assembly of rubrene on a metal/metal oxide nanotemplate.
    Cicoira F; Miwa JA; Perepichka DF; Rosei F
    J Phys Chem A; 2007 Dec; 111(49):12674-8. PubMed ID: 17983212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-oriented moiré superstructures of graphene on Ir(111): experimental observations and theoretical models.
    Meng L; Wu R; Zhang L; Li L; Du S; Wang Y; Gao HJ
    J Phys Condens Matter; 2012 Aug; 24(31):314214. PubMed ID: 22820951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular Tiling of a Conformationally Flexible Precursor.
    Cai L; Huang Y; Wang D; Zhang W; Wang Z; Wee ATS
    J Phys Chem Lett; 2022 Mar; 13(9):2180-2186. PubMed ID: 35230119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kagome network compounds and their novel magnetic properties.
    Pati SK; Rao CN
    Chem Commun (Camb); 2008 Oct; (39):4683-93. PubMed ID: 18830461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-Surface Assembly of Au-Dicyanoanthracene Coordination Structures on Au(111).
    Yan L; Pohjavirta I; Alldritt B; Liljeroth P
    Chemphyschem; 2019 Sep; 20(18):2297-2300. PubMed ID: 31050870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodic overlayers and moiré patterns: theoretical studies of geometric properties.
    Hermann K
    J Phys Condens Matter; 2012 Aug; 24(31):314210. PubMed ID: 22820761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.