BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 19764761)

  • 1. Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications.
    Tao Z; Gao P; Liu HW
    J Am Chem Soc; 2009 Oct; 131(40):14258-60. PubMed ID: 19764761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs.
    Gagné JP; Ethier C; Defoy D; Bourassa S; Langelier MF; Riccio AA; Pascal JM; Moon KM; Foster LJ; Ning Z; Figeys D; Droit A; Poirier GG
    DNA Repair (Amst); 2015 Jun; 30():68-79. PubMed ID: 25800440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterization of mono(ADP-ribosyl)ated poly(ADP-ribose) polymerase.
    Mendoza-Alvarez H; Alvarez-Gonzalez R
    Biochemistry; 1999 Mar; 38(13):3948-53. PubMed ID: 10194306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping PARP-1 auto-ADP-ribosylation sites by liquid chromatography-tandem mass spectrometry.
    Chapman JD; Gagné JP; Poirier GG; Goodlett DR
    J Proteome Res; 2013 Apr; 12(4):1868-80. PubMed ID: 23438649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.
    Lin KY; Huang D; Kraus WL
    Methods Mol Biol; 2018; 1813():91-108. PubMed ID: 30097863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif.
    Tao Z; Gao P; Hoffman DW; Liu HW
    Biochemistry; 2008 May; 47(21):5804-13. PubMed ID: 18452307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Genomic Sites of ADP-Ribosylation Mediated by Specific Nuclear PARP Enzymes Using Click-ChIP.
    Rogge RA; Gibson BA; Kraus WL
    Methods Mol Biol; 2018; 1813():371-387. PubMed ID: 30097881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.
    D'Amours D; Desnoyers S; D'Silva I; Poirier GG
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):249-68. PubMed ID: 10455009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular.
    Mendoza-Alvarez H; Alvarez-Gonzalez R
    J Biol Chem; 1993 Oct; 268(30):22575-80. PubMed ID: 8226768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ADP-ribosyl)ation as a DNA damage-induced post-translational modification regulating poly(ADP-ribose) polymerase-1-topoisomerase I interaction.
    Yung TM; Sato S; Satoh MS
    J Biol Chem; 2004 Sep; 279(38):39686-96. PubMed ID: 15247263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1.
    Langelier MF; Planck JL; Roy S; Pascal JM
    Science; 2012 May; 336(6082):728-32. PubMed ID: 22582261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites.
    Altmeyer M; Messner S; Hassa PO; Fey M; Hottiger MO
    Nucleic Acids Res; 2009 Jun; 37(11):3723-38. PubMed ID: 19372272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-protein interaction of the human poly(ADP-ribosyl)transferase depends on the functional state of the enzyme.
    Griesenbeck J; Oei SL; Mayer-Kuckuk P; Ziegler M; Buchlow G; Schweiger M
    Biochemistry; 1997 Jun; 36(24):7297-304. PubMed ID: 9200678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissection of ADP-ribose polymer synthesis into individual steps of initiation, elongation, and branching.
    Alvarez-Gonzalez R; Mendoza-Alvarez H
    Biochimie; 1995; 77(6):403-7. PubMed ID: 7578422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the enzymatic catalysis of poly(ADP-ribose) polymerase by dsDNA, polyamines, Mg2+, Ca2+, histones H1 and H3, and ATP.
    Kun E; Kirsten E; Mendeleyev J; Ordahl CP
    Biochemistry; 2004 Jan; 43(1):210-6. PubMed ID: 14705947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-stranded DNA binding domain of poly(ADP-ribose) polymerase-1 and molecular insight into the regulation of its activity.
    Huambachano O; Herrera F; Rancourt A; Satoh MS
    J Biol Chem; 2011 Mar; 286(9):7149-60. PubMed ID: 21183686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Protein Substrates of Specific PARP Enzymes Using Analog-Sensitive PARP Mutants and a "Clickable" NAD
    Gibson BA; Kraus WL
    Methods Mol Biol; 2017; 1608():111-135. PubMed ID: 28695507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation.
    Gibson BA; Zhang Y; Jiang H; Hussey KM; Shrimp JH; Lin H; Schwede F; Yu Y; Kraus WL
    Science; 2016 Jul; 353(6294):45-50. PubMed ID: 27256882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells.
    Daniels CM; Ong SE; Leung AK
    J Proteome Res; 2014 Aug; 13(8):3510-22. PubMed ID: 24920161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of telomerase activity by reduction of poly(ADP-ribosyl)ation of TERT and TEP1/TP1 expression in HeLa cells with knocked down poly(ADP-ribose) polymerase-1 (PARP-1) gene.
    Ghosh U; Das N; Bhattacharyya NP
    Mutat Res; 2007 Feb; 615(1-2):66-74. PubMed ID: 17141279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.