These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 19764778)
1. Protein resistance of PNIPAAm brushes: application to switchable protein adsorption. Burkert S; Bittrich E; Kuntzsch M; Müller M; Eichhorn KJ; Bellmann C; Uhlmann P; Stamm M Langmuir; 2010 Feb; 26(3):1786-95. PubMed ID: 19764778 [TBL] [Abstract][Full Text] [Related]
2. Adsorption of enzymes to stimuli-responsive polymer brushes: Influence of brush conformation on adsorbed amount and biocatalytic activity. Koenig M; Bittrich E; König U; Rajeev BL; Müller M; Eichhorn KJ; Thomas S; Stamm M; Uhlmann P Colloids Surf B Biointerfaces; 2016 Oct; 146():737-45. PubMed ID: 27447452 [TBL] [Abstract][Full Text] [Related]
3. Nanostructured Biointerfaces: Nanoarchitectonics of Thermoresponsive Polymer Brushes Impact Protein Adsorption and Cell Adhesion. Psarra E; König U; Ueda Y; Bellmann C; Janke A; Bittrich E; Eichhorn KJ; Uhlmann P ACS Appl Mater Interfaces; 2015 Jun; 7(23):12516-29. PubMed ID: 25651080 [TBL] [Abstract][Full Text] [Related]
4. ARGET-ATRP synthesis and characterization of PNIPAAm brushes for quantitative cell detachment studies. Shivapooja P; Ista LK; Canavan HE; Lopez GP Biointerphases; 2012 Dec; 7(1-4):32. PubMed ID: 22589075 [TBL] [Abstract][Full Text] [Related]
5. Protein adsorption on poly(N-isopropylacrylamide) brushes: dependence on grafting density and chain collapse. Xue C; Yonet-Tanyeri N; Brouette N; Sferrazza M; Braun PV; Leckband DE Langmuir; 2011 Jul; 27(14):8810-8. PubMed ID: 21662243 [TBL] [Abstract][Full Text] [Related]
6. Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: effects of grafted layer thickness and protein size. Yu Q; Zhang Y; Chen H; Wu Z; Huang H; Cheng C Colloids Surf B Biointerfaces; 2010 Apr; 76(2):468-74. PubMed ID: 20045297 [TBL] [Abstract][Full Text] [Related]
7. In-situ investigation of the adsorption of globular model proteins on stimuli-responsive binary polyelectrolyte brushes. Uhlmann P; Houbenov N; Brenner N; Grundke K; Burkert S; Stamm M Langmuir; 2007 Jan; 23(1):57-64. PubMed ID: 17190485 [TBL] [Abstract][Full Text] [Related]
8. Design of mixed PEO/PAA brushes with switchable properties toward protein adsorption. Delcroix MF; Huet GL; Conard T; Demoustier-Champagne S; Du Prez FE; Landoulsi J; Dupont-Gillain CC Biomacromolecules; 2013 Jan; 14(1):215-25. PubMed ID: 23214415 [TBL] [Abstract][Full Text] [Related]
9. Responsive PET nano/microfibers via surface-initiated polymerization. Özçam AE; Roskov KE; Genzer J; Spontak RJ ACS Appl Mater Interfaces; 2012 Jan; 4(1):59-64. PubMed ID: 22233710 [TBL] [Abstract][Full Text] [Related]
10. "Schizophrenic" hemocompatible copolymers via switchable thermoresponsive transition of nonionic/zwitterionic block self-assembly in human blood. Shih YJ; Chang Y; Deratani A; Quemener D Biomacromolecules; 2012 Sep; 13(9):2849-58. PubMed ID: 22838402 [TBL] [Abstract][Full Text] [Related]
11. Humic acid removal and easy-cleanability using temperature-responsive ZrO2 tubular membranes grafted with poly(N-isopropylacrylamide) brush chains. Zhao Y; Zhou S; Li M; Xue A; Zhang Y; Wang J; Xing W Water Res; 2013 May; 47(7):2375-86. PubMed ID: 23466218 [TBL] [Abstract][Full Text] [Related]
12. Interactions between bovine serum albumin and Langmuir films composed of charged and uncharged poly(N-isopropylacrylamide) block copolymers. Volden S; Ese MH; Zhu K; Yasuda M; Nyström B; Glomm WR Colloids Surf B Biointerfaces; 2012 Oct; 98():50-7. PubMed ID: 22652359 [TBL] [Abstract][Full Text] [Related]
14. Protein adsorption mechanisms determine the efficiency of thermally controlled cell adhesion on poly(N-isopropyl acrylamide) brushes. Choi S; Choi BC; Xue C; Leckband D Biomacromolecules; 2013 Jan; 14(1):92-100. PubMed ID: 23214990 [TBL] [Abstract][Full Text] [Related]
15. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Pan G; Zhang Y; Guo X; Li C; Zhang H Biosens Bioelectron; 2010 Nov; 26(3):976-82. PubMed ID: 20837394 [TBL] [Abstract][Full Text] [Related]
16. Patterned poly(N-isopropylacrylamide) brushes on silica surfaces by microcontact printing followed by surface-initiated polymerization. Tu H; Heitzman CE; Braun PV Langmuir; 2004 Sep; 20(19):8313-20. PubMed ID: 15350108 [TBL] [Abstract][Full Text] [Related]
17. Thermoresponsive protein adsorption of poly(N-isopropylacrylamide)-modified streptavidin on polydimethylsiloxane microchannel surfaces. Sugiura S; Imano W; Takagi T; Sakai K; Kanamori T Biosens Bioelectron; 2009 Jan; 24(5):1135-40. PubMed ID: 18678482 [TBL] [Abstract][Full Text] [Related]
18. Protein adsorption and cell adhesion/detachment behavior on dual-responsive silicon surfaces modified with poly(N-isopropylacrylamide)-block-polystyrene copolymer. Yu Q; Zhang Y; Chen H; Zhou F; Wu Z; Huang H; Brash JL Langmuir; 2010 Jun; 26(11):8582-8. PubMed ID: 20170172 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of protein adsorption and cell adhesion on PNIPAAm-grafted polyurethane surface: effect of graft molecular weight. Zhao T; Chen H; Zheng J; Yu Q; Wu Z; Yuan L Colloids Surf B Biointerfaces; 2011 Jun; 85(1):26-31. PubMed ID: 21093225 [TBL] [Abstract][Full Text] [Related]
20. Reversible Protein Adsorption on Mixed PEO/PAA Polymer Brushes: Role of Ionic Strength and PEO Content. Bratek-Skicki A; Eloy P; Morga M; Dupont-Gillain C Langmuir; 2018 Mar; 34(9):3037-3048. PubMed ID: 29406751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]