These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19764873)

  • 1. Plasticity-induced symmetry relationships between adjacent self-organizing topographic maps.
    Sylvester J; Reggia J
    Neural Comput; 2009 Dec; 21(12):3429-43. PubMed ID: 19764873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mirror symmetric topographic maps can arise from activity-dependent synaptic changes.
    Schulz R; Reggia JA
    Neural Comput; 2005 May; 17(5):1059-83. PubMed ID: 15829100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homeostatic synaptic scaling in self-organizing maps.
    Sullivan TJ; de Sa VR
    Neural Netw; 2006; 19(6-7):734-43. PubMed ID: 16782305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition, not excitation, is the key to multimodal sensory integration.
    Friedel P; van Hemmen JL
    Biol Cybern; 2008 Jun; 98(6):597-618. PubMed ID: 18491169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping time.
    Leibold C; van Hemmen JL
    Biol Cybern; 2002 Dec; 87(5-6):428-39. PubMed ID: 12461632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The adaptation of visual and auditory integration in the barn owl superior colliculus with Spike Timing Dependent Plasticity.
    Huo J; Murray A
    Neural Netw; 2009 Sep; 22(7):913-21. PubMed ID: 19084371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal dynamics of rate-based synaptic plasticity rules in a stochastic model of spike-timing-dependent plasticity.
    Elliott T
    Neural Comput; 2008 Sep; 20(9):2253-307. PubMed ID: 18336079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imprecise correlated activity in self-organizing maps of spiking neurons.
    Veredas FJ; Mesa H; Martínez LA
    Neural Netw; 2008 Aug; 21(6):810-6. PubMed ID: 18662853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using spatiotemporal correlations to learn topographic maps for invariant object recognition.
    Michler F; Eckhorn R; Wachtler T
    J Neurophysiol; 2009 Aug; 102(2):953-64. PubMed ID: 19494190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How does non-random spontaneous activity contribute to brain development?
    Thivierge JP
    Neural Netw; 2009 Sep; 22(7):901-12. PubMed ID: 19196491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metrics for cortical map organization and lateralization.
    Alvarez SA; Levitan S; Reggia JA
    Bull Math Biol; 1998 Jan; 60(1):27-47. PubMed ID: 9530016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive synchronization of activities in a recurrent network.
    Voegtlin T
    Neural Comput; 2009 Jun; 21(6):1749-75. PubMed ID: 19191597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neocortical cell classes are flexible entities.
    Steriade M
    Nat Rev Neurosci; 2004 Feb; 5(2):121-34. PubMed ID: 14735115
    [No Abstract]   [Full Text] [Related]  

  • 15. Intrinsic versus extrinsic influences in the development of neuronal maps.
    Elliott T
    Biol Cybern; 2007 Jan; 96(1):129-43. PubMed ID: 16957951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent energy budget for neocortical signaling: effect of short-term synaptic plasticity on the energy expended by spiking and synaptic activity.
    DiNuzzo M; Giove F
    J Neurosci Res; 2012 Nov; 90(11):2094-102. PubMed ID: 22740502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organizing maps as a model of brain mechanisms potentially linked to autism.
    Noriega G
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):217-26. PubMed ID: 17601191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic plasticity in the adult neocortex.
    Hickmott PW; Ethell IM
    Neuroscientist; 2006 Feb; 12(1):16-28. PubMed ID: 16394190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning cortical topography from spatiotemporal stimuli.
    Wiemer J; Spengler F; Joublin F; Stagge P; Wacquant S
    Biol Cybern; 2000 Feb; 82(2):173-87. PubMed ID: 10664104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.