These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19765238)

  • 41. The neural basis of the egocentric and allocentric spatial frame of reference.
    Zaehle T; Jordan K; Wüstenberg T; Baudewig J; Dechent P; Mast FW
    Brain Res; 2007 Mar; 1137(1):92-103. PubMed ID: 17258693
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Imagery of a moving object: the role of occipital cortex and human MT/V5+.
    Kaas A; Weigelt S; Roebroeck A; Kohler A; Muckli L
    Neuroimage; 2010 Jan; 49(1):794-804. PubMed ID: 19646536
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatio-temporal brain activity related to rotation method during a mental rotation task of three-dimensional objects: an MEG study.
    Kawamichi H; Kikuchi Y; Ueno S
    Neuroimage; 2007 Sep; 37(3):956-65. PubMed ID: 17613250
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control.
    Thiel CM; Fink GR
    Neuroscience; 2008 Mar; 152(2):381-90. PubMed ID: 18272290
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A functional MRI study of preparatory signals for spatial location and objects.
    Corbetta M; Tansy AP; Stanley CM; Astafiev SV; Snyder AZ; Shulman GL
    Neuropsychologia; 2005; 43(14):2041-56. PubMed ID: 16243051
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
    Whittingstall K; Wilson D; Schmidt M; Stroink G
    Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural correlates of spatial and non-spatial inhibition of return (IOR) in attentional orienting.
    Zhou X; Chen Q
    Neuropsychologia; 2008 Sep; 46(11):2766-75. PubMed ID: 18597795
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The nature of gestures' beneficial role in spatial problem solving.
    Chu M; Kita S
    J Exp Psychol Gen; 2011 Feb; 140(1):102-16. PubMed ID: 21299319
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Similar effects of visual perception and imagery on simple reaction time.
    Broggin E; Savazzi S; Marzi CA
    Q J Exp Psychol (Hove); 2012; 65(1):151-64. PubMed ID: 21879807
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Common Neural Representations for Visually Guided Reorientation and Spatial Imagery.
    Vass LK; Epstein RA
    Cereb Cortex; 2017 Feb; 27(2):1457-1471. PubMed ID: 26759482
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of task performance during mentally imaging three-dimensional shapes from plane figures.
    Kashihara K; Nakahara Y
    Percept Mot Skills; 2011 Aug; 113(1):188-200. PubMed ID: 21987919
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decoding category and familiarity information during visual imagery.
    Ragni F; Lingnau A; Turella L
    Neuroimage; 2021 Nov; 241():118428. PubMed ID: 34311066
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diminished motor imagery capability in adults with motor impairment: An fMRI mental rotation study.
    Kashuk SR; Williams J; Thorpe G; Wilson PH; Egan GF
    Behav Brain Res; 2017 Sep; 334():86-96. PubMed ID: 28673767
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effects of the experience of forming visual images on the spatial organization of the EEG.
    Sviderskaya NE; Taratynova GV; Kozhedub RG
    Neurosci Behav Physiol; 2006 Nov; 36(9):941-9. PubMed ID: 17024333
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Implicit learning of sequential regularities and spatial contexts in corticobasal syndrome.
    Negash S; Boeve BF; Geda YE; Smith GE; Knopman DS; Ivnik RJ; Howard DV; Howard JH; Petersen RC
    Neurocase; 2007 Jun; 13(3):133-43. PubMed ID: 17786771
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visuo-spatial imagery in congenitally totally blind people.
    Vecchi T
    Memory; 1998 Jan; 6(1):91-102. PubMed ID: 9640434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Integration of "what" and "where" in frontal cortex during visual imagery of scenes.
    de Borst AW; Sack AT; Jansma BM; Esposito F; de Martino F; Valente G; Roebroeck A; di Salle F; Goebel R; Formisano E
    Neuroimage; 2012 Mar; 60(1):47-58. PubMed ID: 22186678
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distinct Top-down and Bottom-up Brain Connectivity During Visual Perception and Imagery.
    Dijkstra N; Zeidman P; Ondobaka S; van Gerven MAJ; Friston K
    Sci Rep; 2017 Jul; 7(1):5677. PubMed ID: 28720781
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A penny for your thoughts! patterns of fMRI activity reveal the content and the spatial topography of visual mental images.
    Boccia M; Piccardi L; Palermo L; Nemmi F; Sulpizio V; Galati G; Guariglia C
    Hum Brain Mapp; 2015 Mar; 36(3):945-58. PubMed ID: 25359694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.