These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19765316)

  • 1. Discovering cancer genes by integrating network and functional properties.
    Li L; Zhang K; Lee J; Cordes S; Davis DP; Tang Z
    BMC Med Genomics; 2009 Sep; 2():61. PubMed ID: 19765316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting potential cancer genes by integrating network properties, sequence features and functional annotations.
    Liu W; Xie H
    Sci China Life Sci; 2013 Aug; 56(8):751-7. PubMed ID: 23838808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-protein interaction prediction by combined analysis of genomic and conservation information.
    Emamjomeh A; Goliaei B; Torkamani A; Ebrahimpour R; Mohammadi N; Parsian A
    Genes Genet Syst; 2014; 89(6):259-72. PubMed ID: 25948120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities.
    Fernando PC; Mabee PM; Zeng E
    BMC Bioinformatics; 2020 Oct; 21(1):442. PubMed ID: 33028186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and identification of essential genes in humans using topological properties and biological information.
    Yang L; Wang J; Wang H; Lv Y; Zuo Y; Li X; Jiang W
    Gene; 2014 Nov; 551(2):138-51. PubMed ID: 25168893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A human functional protein interaction network and its application to cancer data analysis.
    Wu G; Feng X; Stein L
    Genome Biol; 2010; 11(5):R53. PubMed ID: 20482850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy.
    Kim WK; Krumpelman C; Marcotte EM
    Genome Biol; 2008; 9 Suppl 1(Suppl 1):S5. PubMed ID: 18613949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network.
    Linghu B; Snitkin ES; Hu Z; Xia Y; Delisi C
    Genome Biol; 2009; 10(9):R91. PubMed ID: 19728866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing the predicted maize pan-interactome for putative gene function prediction and prioritization of candidate genes for important traits.
    Poretsky E; Cagirici HB; Andorf CM; Sen TZ
    G3 (Bethesda); 2024 May; 14(5):. PubMed ID: 38492232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mining susceptibility gene modules and disease risk genes from SNP data by combining network topological properties with support vector regression.
    Hua L; Zhou P; Liu H; Li L; Yang Z; Liu ZC
    J Theor Biol; 2011 Nov; 289():225-36. PubMed ID: 21910999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.
    Luo J; Liang S
    J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting protein complexes in a PPI network: a gene ontology based multi-objective evolutionary approach.
    Mukhopadhyay A; Ray S; De M
    Mol Biosyst; 2012 Nov; 8(11):3036-48. PubMed ID: 22990765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CPredictor3.0: detecting protein complexes from PPI networks with expression data and functional annotations.
    Xu Y; Zhou J; Zhou S; Guan J
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):135. PubMed ID: 29322927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering disease-genes by topological features in human protein-protein interaction network.
    Xu J; Li Y
    Bioinformatics; 2006 Nov; 22(22):2800-5. PubMed ID: 16954137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein complexes identification based on go attributed network embedding.
    Xu B; Li K; Zheng W; Liu X; Zhang Y; Zhao Z; He Z
    BMC Bioinformatics; 2018 Dec; 19(1):535. PubMed ID: 30572820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discerning molecular interactions: A comprehensive review on biomolecular interaction databases and network analysis tools.
    Miryala SK; Anbarasu A; Ramaiah S
    Gene; 2018 Feb; 642():84-94. PubMed ID: 29129810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene networks in Drosophila melanogaster: integrating experimental data to predict gene function.
    Costello JC; Dalkilic MM; Beason SM; Gehlhausen JR; Patwardhan R; Middha S; Eads BD; Andrews JR
    Genome Biol; 2009; 10(9):R97. PubMed ID: 19758432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating multiple protein-protein interaction networks to prioritize disease genes: a Bayesian regression approach.
    Zhang W; Sun F; Jiang R
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S11. PubMed ID: 21342540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.