BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 19765554)

  • 1. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of sustained spatial attention in human early visual cortex.
    Silver MA; Ress D; Heeger DJ
    J Neurophysiol; 2007 Jan; 97(1):229-37. PubMed ID: 16971677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prioritizing new over old: an fMRI study of the preview search task.
    Olivers CN; Smith S; Matthews P; Humphreys GW
    Hum Brain Mapp; 2005 Jan; 24(1):69-78. PubMed ID: 15390216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the unity and diversity of the neural substrates of executive functioning.
    Collette F; Van der Linden M; Laureys S; Delfiore G; Degueldre C; Luxen A; Salmon E
    Hum Brain Mapp; 2005 Aug; 25(4):409-23. PubMed ID: 15852470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention.
    Bressler SL; Tang W; Sylvester CM; Shulman GL; Corbetta M
    J Neurosci; 2008 Oct; 28(40):10056-61. PubMed ID: 18829963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hierarchy of attentional priority signals in human frontoparietal cortex.
    Liu T; Hou Y
    J Neurosci; 2013 Oct; 33(42):16606-16. PubMed ID: 24133264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic maps of visual spatial attention in human parietal cortex.
    Silver MA; Ress D; Heeger DJ
    J Neurophysiol; 2005 Aug; 94(2):1358-71. PubMed ID: 15817643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial interference during bimanual coordination: differential brain networks associated with control of movement amplitude and direction.
    Wenderoth N; Debaere F; Sunaert S; Swinnen SP
    Hum Brain Mapp; 2005 Dec; 26(4):286-300. PubMed ID: 15965999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specialization in the default mode: Task-induced brain deactivations dissociate between visual working memory and attention.
    Mayer JS; Roebroeck A; Maurer K; Linden DE
    Hum Brain Mapp; 2010 Jan; 31(1):126-39. PubMed ID: 19639552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism.
    Villalobos ME; Mizuno A; Dahl BC; Kemmotsu N; Müller RA
    Neuroimage; 2005 Apr; 25(3):916-25. PubMed ID: 15808991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial relations and spatial locations are dissociated within prefrontal and parietal cortex.
    Ackerman CM; Courtney SM
    J Neurophysiol; 2012 Nov; 108(9):2419-29. PubMed ID: 22896722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional specialization and generalization for grouping of stimuli based on colour and motion.
    Zeki S; Stutters J
    Neuroimage; 2013 Jun; 73():156-66. PubMed ID: 23415950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The processing of visual shape in the cerebral cortex of human and nonhuman primates: a functional magnetic resonance imaging study.
    Denys K; Vanduffel W; Fize D; Nelissen K; Peuskens H; Van Essen D; Orban GA
    J Neurosci; 2004 Mar; 24(10):2551-65. PubMed ID: 15014131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.
    Nelissen N; Stokes M; Nobre AC; Rushworth MF
    J Neurosci; 2013 Oct; 33(42):16443-58. PubMed ID: 24133250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delay-period activity in frontal, parietal, and occipital cortex tracks noise and biases in visual working memory.
    Yu Q; Panichello MF; Cai Y; Postle BR; Buschman TJ
    PLoS Biol; 2020 Sep; 18(9):e3000854. PubMed ID: 32898172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dorsal and ventral parietal contributions to spatial orienting in the human brain.
    Chica AB; Bartolomeo P; Valero-Cabré A
    J Neurosci; 2011 Jun; 31(22):8143-9. PubMed ID: 21632936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical organization of parietofrontal circuits during goal-directed action.
    Verhagen L; Dijkerman HC; Medendorp WP; Toni I
    J Neurosci; 2013 Apr; 33(15):6492-503. PubMed ID: 23575847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-down control of visual attention.
    Noudoost B; Chang MH; Steinmetz NA; Moore T
    Curr Opin Neurobiol; 2010 Apr; 20(2):183-90. PubMed ID: 20303256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Top-down versus bottom-up attention differentially modulate frontal-parietal connectivity.
    Bowling JT; Friston KJ; Hopfinger JB
    Hum Brain Mapp; 2020 Mar; 41(4):928-942. PubMed ID: 31692192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain-Specific Diaschisis: Lesions to Parietal Action Areas Modulate Neural Responses to Tools in the Ventral Stream.
    Garcea FE; Almeida J; Sims MH; Nunno A; Meyers SP; Li YM; Walter K; Pilcher WH; Mahon BZ
    Cereb Cortex; 2019 Jul; 29(7):3168-3181. PubMed ID: 30169596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.