These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 19765620)

  • 21. Application of the Cre-loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus.
    Ribeiro O; Gombert AK; Teixeira JA; Domingues L
    J Biotechnol; 2007 Aug; 131(1):20-6. PubMed ID: 17624462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A disruption-replacement approach for the targeted integration of foreign genes in Hansenula polymorpha.
    Agaphonov MO; Beburov MYu ; Ter-Avanesyan MD; Smirnov VN
    Yeast; 1995 Oct; 11(13):1241-7. PubMed ID: 8553695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [A novel approach to isolation and functional characterization of genomic DNA from the methylotrophic yeast Hansenula polymorpha].
    Agafonov MO; Deev AV; Kim SY; Sohn JH; Choi ES; Ter-Avanesian MD
    Mol Biol (Mosk); 2003; 37(1):81-7. PubMed ID: 12624950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New selectable host-marker systems for multiple genetic manipulations based on TRP1, MET2 and ADE2 in the methylotrophic yeast Hansenula polymorpha.
    Cheon SA; Choo J; Ubiyvovk VM; Park JN; Kim MW; Oh DB; Kwon O; Sibirny AA; Kim JY; Kang HA
    Yeast; 2009 Sep; 26(9):507-21. PubMed ID: 19653331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The application of the Cre-loxP system for generating multiple knock-out and knock-in targeted loci.
    Faix J; Linkner J; Nordholz B; Platt JL; Liao XH; Kimmel AR
    Methods Mol Biol; 2013; 983():249-67. PubMed ID: 23494311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of vectors for efficient integration and transformation in Hansenula polymorpha.
    Liu Y; Li Y; Liu L; Hu X; Qiu B
    Biotechnol Lett; 2005 Oct; 27(19):1529-34. PubMed ID: 16231227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Transformation of the yeast Hansenula polymorpha by a hybrid plasmid containing the fragment of host DNA].
    Makhina EN; Nesterova GF; Grishin AV
    Mol Gen Mikrobiol Virusol; 1985 May; (5):28-31. PubMed ID: 3870352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of host and vector for high-efficiency transformation and gene disruption in Debaryomyces hansenii.
    Minhas A; Biswas D; Mondal AK
    FEMS Yeast Res; 2009 Feb; 9(1):95-102. PubMed ID: 19076242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a transformation system for the yeast Yamadazyma (Pichia) ohmeri.
    Piredda S; Gaillardin C
    Yeast; 1994 Dec; 10(12):1601-12. PubMed ID: 7725795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel genetic tools for Hansenula polymorpha.
    Saraya R; Krikken AM; Kiel JA; Baerends RJ; Veenhuis M; van der Klei IJ
    FEMS Yeast Res; 2012 May; 12(3):271-8. PubMed ID: 22129301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transformation in the methylotrophic yeast Pichia methanolica utilizing homologous ADE1 and heterologous Saccharomyces cerevisiae ADE2 and LEU2 genes as genetic markers.
    Hiep TT; Noskov VN; Pavlov YI
    Yeast; 1993 Nov; 9(11):1189-97. PubMed ID: 8109168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning and characterization of the Hansenula polymorpha PEP4 gene encoding proteinase A.
    Bae JH; Sohn JH; Rhee SK; Choi ES
    Yeast; 2005 Jan; 22(1):13-9. PubMed ID: 15593064
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minimization of the Escherichia coli genome using the Tn5-targeted Cre/loxP excision system.
    Yu BJ; Kim C
    Methods Mol Biol; 2008; 416():261-77. PubMed ID: 18392973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Development of a method for vector transformation of the methyltrophic yeast Pichia methanolica].
    Tarutina MG; Tolstorukov II
    Genetika; 1994 Jun; 30(6):783-90. PubMed ID: 7958792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum.
    Lambert JM; Bongers RS; Kleerebezem M
    Appl Environ Microbiol; 2007 Feb; 73(4):1126-35. PubMed ID: 17142375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High frequency of single-copy T-DNA transformants produced by floral dip in CRE-expressing Arabidopsis plants.
    De Paepe A; De Buck S; Hoorelbeke K; Nolf J; Peck I; Depicker A
    Plant J; 2009 Aug; 59(4):517-27. PubMed ID: 19392707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (DeltaligD) in Aspergillus oryzae.
    Maruyama J; Kitamoto K
    Biotechnol Lett; 2008 Oct; 30(10):1811-7. PubMed ID: 18574559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A high-throughput screen identifying sequence and promiscuity characteristics of the loxP spacer region in Cre-mediated recombination.
    Missirlis PI; Smailus DE; Holt RA
    BMC Genomics; 2006 Apr; 7():73. PubMed ID: 16595017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trypanosoma brucei: a first-generation CRE-loxP site-specific recombination system.
    Barrett B; LaCount DJ; Donelson JE
    Exp Parasitol; 2004; 106(1-2):37-44. PubMed ID: 15013787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selectable marker replacement in Saccharomyces cerevisiae.
    Vidal M; Gaber RF
    Yeast; 1994 Feb; 10(2):141-9. PubMed ID: 8203156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.