BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19765821)

  • 1. The role of nanoparticle concentration-dependent induction of cellular stress in the internalization of non-toxic cationic magnetoliposomes.
    Soenen SJ; Illyes E; Vercauteren D; Braeckmans K; Majer Z; De Smedt SC; De Cuyper M
    Biomaterials; 2009 Dec; 30(36):6803-13. PubMed ID: 19765821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model.
    Soenen SJ; Brisson AR; De Cuyper M
    Biomaterials; 2009 Aug; 30(22):3691-701. PubMed ID: 19371948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling.
    Soenen SJ; Nuytten N; De Meyer SF; De Smedt SC; De Cuyper M
    Small; 2010 Apr; 6(7):832-42. PubMed ID: 20213651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The labeling of cationic iron oxide nanoparticle-resistant hepatocellular carcinoma cells using targeted magnetoliposomes.
    Soenen SJ; Brisson AR; Jonckheere E; Nuytten N; Tan S; Himmelreich U; De Cuyper M
    Biomaterials; 2011 Feb; 32(6):1748-58. PubMed ID: 21112624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation.
    Buyukhatipoglu K; Clyne AM
    J Biomed Mater Res A; 2011 Jan; 96(1):186-95. PubMed ID: 21105167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.
    Kalambur VS; Longmire EK; Bischof JC
    Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function.
    Huang X; Teng X; Chen D; Tang F; He J
    Biomaterials; 2010 Jan; 31(3):438-48. PubMed ID: 19800115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells.
    Villanueva A; Cañete M; Roca AG; Calero M; Veintemillas-Verdaguer S; Serna CJ; Morales Mdel P; Miranda R
    Nanotechnology; 2009 Mar; 20(11):115103. PubMed ID: 19420433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal conditions for labelling of 3T3 fibroblasts with magnetoliposomes without affecting cellular viability.
    Soenen SJ; Baert J; De Cuyper M
    Chembiochem; 2007 Nov; 8(17):2067-77. PubMed ID: 17943707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles.
    Gupta AK; Gupta M
    Biomaterials; 2005 May; 26(13):1565-73. PubMed ID: 15522758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable long-term intracellular labelling with fluorescently tagged cationic magnetoliposomes.
    Soenen SJ; Vercauteren D; Braeckmans K; Noppe W; De Smedt S; De Cuyper M
    Chembiochem; 2009 Jan; 10(2):257-67. PubMed ID: 19072823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing cytotoxicity of (iron oxide-based) nanoparticles: an overview of different methods exemplified with cationic magnetoliposomes.
    Soenen SJ; De Cuyper M
    Contrast Media Mol Imaging; 2009; 4(5):207-19. PubMed ID: 19810053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: a promising tool to label cells for magnetic resonance imaging.
    Zhang C; Wängler B; Morgenstern B; Zentgraf H; Eisenhut M; Untenecker H; Krüger R; Huss R; Seliger C; Semmler W; Kiessling F
    Langmuir; 2007 Jan; 23(3):1427-34. PubMed ID: 17241069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents.
    Prakash A; Zhu H; Jones CJ; Benoit DN; Ellsworth AZ; Bryant EL; Colvin VL
    ACS Nano; 2009 Aug; 3(8):2139-46. PubMed ID: 19594166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cationic magnetoliposomes.
    De Cuyper M; Soenen SJ
    Methods Mol Biol; 2010; 605():97-111. PubMed ID: 20072875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes.
    Ramezani M; Khoshhamdam M; Dehshahri A; Malaekeh-Nikouei B
    Colloids Surf B Biointerfaces; 2009 Aug; 72(1):1-5. PubMed ID: 19395245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cationic gel-phase liposomes with "decorated" anionic SPIO nanoparticles: morphology, colloidal, and bilayer properties.
    Chen Y; Bothun GD
    Langmuir; 2011 Jul; 27(14):8645-52. PubMed ID: 21649441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells.
    Huang DM; Chung TH; Hung Y; Lu F; Wu SH; Mou CY; Yao M; Chen YC
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):208-15. PubMed ID: 18519141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The in vitro kinetics of the interactions between PEG-ylated magnetic-fluid-loaded liposomes and macrophages.
    Martina MS; Nicolas V; Wilhelm C; Ménager C; Barratt G; Lesieur S
    Biomaterials; 2007 Oct; 28(28):4143-53. PubMed ID: 17574668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle-loaded magnetophoretic vesicles.
    Krack M; Hohenberg H; Kornowski A; Lindner P; Weller H; Förster S
    J Am Chem Soc; 2008 Jun; 130(23):7315-20. PubMed ID: 18484723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.