These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

589 related articles for article (PubMed ID: 19765880)

  • 21. Adolescent development of inhibition as a function of SES and gender: Converging evidence from behavior and fMRI.
    Spielberg JM; Galarce EM; Ladouceur CD; McMakin DL; Olino TM; Forbes EE; Silk JS; Ryan ND; Dahl RE
    Hum Brain Mapp; 2015 Aug; 36(8):3194-203. PubMed ID: 26010995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurodevelopmental changes in working memory and cognitive control.
    Bunge SA; Wright SB
    Curr Opin Neurobiol; 2007 Apr; 17(2):243-50. PubMed ID: 17321127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. fMRI and MEG in the study of typical and atypical cognitive development.
    Taylor MJ; Donner EJ; Pang EW
    Neurophysiol Clin; 2012; 42(1-2):19-25. PubMed ID: 22200338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adolescent risky decision-making: neurocognitive development of reward and control regions.
    Van Leijenhorst L; Gunther Moor B; Op de Macks ZA; Rombouts SA; Westenberg PM; Crone EA
    Neuroimage; 2010 May; 51(1):345-55. PubMed ID: 20188198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cognitive ability is associated with changes in the functional organization of the cognitive control brain network.
    A Breukelaar I; Williams LM; Antees C; Grieve SM; Foster SL; Gomes L; Korgaonkar MS
    Hum Brain Mapp; 2018 Dec; 39(12):5028-5038. PubMed ID: 30136345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Working memory circuit as a function of increasing age in healthy adolescence: A systematic review and meta-analyses.
    Andre J; Picchioni M; Zhang R; Toulopoulou T
    Neuroimage Clin; 2016; 12():940-948. PubMed ID: 27995059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emotional and cognitive changes during adolescence.
    Yurgelun-Todd D
    Curr Opin Neurobiol; 2007 Apr; 17(2):251-7. PubMed ID: 17383865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The neurobiological correlates of cognitive outcomes in adolescence and adulthood following very preterm birth.
    Hadaya L; Nosarti C
    Semin Fetal Neonatal Med; 2020 Jun; 25(3):101117. PubMed ID: 32451305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Turning down the heat: Neural mechanisms of cognitive control for inhibiting task-irrelevant emotional information during adolescence.
    Banich MT; Smolker HR; Snyder HR; Lewis-Peacock JA; Godinez DA; Wager TD; Hankin BL
    Neuropsychologia; 2019 Mar; 125():93-108. PubMed ID: 30615898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contextual and Developmental Differences in the Neural Architecture of Cognitive Control.
    Petrican R; Grady CL
    J Neurosci; 2017 Aug; 37(32):7711-7726. PubMed ID: 28716967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional independence in resting-state connectivity facilitates higher-order cognition.
    James GA; Kearney-Ramos TE; Young JA; Kilts CD; Gess JL; Fausett JS
    Brain Cogn; 2016 Jun; 105():78-87. PubMed ID: 27105037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Data-driven identification of subtypes of executive function across typical development, attention deficit hyperactivity disorder, and autism spectrum disorders.
    Vaidya CJ; You X; Mostofsky S; Pereira F; Berl MM; Kenworthy L
    J Child Psychol Psychiatry; 2020 Jan; 61(1):51-61. PubMed ID: 31509248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topologically Reorganized Connectivity Architecture of Default-Mode, Executive-Control, and Salience Networks across Working Memory Task Loads.
    Liang X; Zou Q; He Y; Yang Y
    Cereb Cortex; 2016 Apr; 26(4):1501-1511. PubMed ID: 25596593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of the self-concept during adolescence.
    Sebastian C; Burnett S; Blakemore SJ
    Trends Cogn Sci; 2008 Nov; 12(11):441-6. PubMed ID: 18805040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cannabis use and memory brain function in adolescent boys: a cross-sectional multicenter functional magnetic resonance imaging study.
    Jager G; Block RI; Luijten M; Ramsey NF
    J Am Acad Child Adolesc Psychiatry; 2010 Jun; 49(6):561-72, 572.e1-3. PubMed ID: 20494266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developmental changes in performance monitoring: how electrophysiological data can enhance our understanding of error and feedback processing in childhood and adolescence.
    Ferdinand NK; Kray J
    Behav Brain Res; 2014 Apr; 263():122-32. PubMed ID: 24487012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-related cognitive gains are mediated by the effects of white matter development on brain network integration.
    Stevens MC; Skudlarski P; Pearlson GD; Calhoun VD
    Neuroimage; 2009 Dec; 48(4):738-46. PubMed ID: 19577651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions between recreational cannabis use and cognitive function: lessons from functional magnetic resonance imaging.
    Sagar KA; Gruber SA
    Ann N Y Acad Sci; 2019 Sep; 1451(1):42-70. PubMed ID: 30426517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural response to working memory demand predicts neurocognitive deficits in HIV.
    Cohen RA; Siegel S; Gullett JM; Porges E; Woods AJ; Huang H; Zhu Y; Tashima K; Ding MZ
    J Neurovirol; 2018 Jun; 24(3):291-304. PubMed ID: 29280107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.