These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 19766178)
1. The influence of polymer architecture on the protective effect of novel comb shaped amphiphilic poly(allylamine) against in vitro enzymatic degradation of insulin--towards oral insulin delivery. Thompson CJ; Tetley L; Cheng WP Int J Pharm; 2010 Jan; 383(1-2):216-27. PubMed ID: 19766178 [TBL] [Abstract][Full Text] [Related]
2. The complexation between novel comb shaped amphiphilic polyallylamine and insulin: towards oral insulin delivery. Thompson CJ; Tetley L; Uchegbu IF; Cheng WP Int J Pharm; 2009 Jul; 376(1-2):46-55. PubMed ID: 19375489 [TBL] [Abstract][Full Text] [Related]
3. Self-assembling nanocomplexes from insulin and water-soluble branched polyesters, poly[(vinyl-3-(diethylamino)- propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol)]-graft- poly(L-lactic acid): a novel carrier for transmucosal delivery of peptides. Simon M; Wittmar M; Bakowsky U; Kissel T Bioconjug Chem; 2004; 15(4):841-9. PubMed ID: 15264872 [TBL] [Abstract][Full Text] [Related]
4. Complexation of novel thiomers and insulin to protect against in vitro enzymatic degradation - towards oral insulin delivery. Ibie CO; Knott RM; Thompson CJ Drug Dev Ind Pharm; 2019 Jan; 45(1):67-75. PubMed ID: 30252537 [TBL] [Abstract][Full Text] [Related]
5. Nanosized insulin-complexes based on biodegradable amine-modified graft polyesters poly[vinyl-3-(diethylamino)-propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol)]-graft-poly(L-lactic acid): protection against enzymatic degradation, interaction with Caco-2 cell monolayers, peptide transport and cytotoxicity. Simon M; Behrens I; Dailey LA; Wittmar M; Kissel T Eur J Pharm Biopharm; 2007 May; 66(2):165-72. PubMed ID: 17150341 [TBL] [Abstract][Full Text] [Related]
6. Amphiphilic comb-like polymers based on poly(oxyethylene)s as drug-delivery carriers. Kim KH; Lee JC; Lee J Macromol Biosci; 2008 Apr; 8(4):339-46. PubMed ID: 18098266 [TBL] [Abstract][Full Text] [Related]
7. N-hydroxypropyltrimethylammonium polydimethylaminoethylmethacrylate sub-microparticles for oral delivery of insulin--an in vitro evaluation. Sonia TA; Sharma CP Colloids Surf B Biointerfaces; 2013 Jul; 107():205-12. PubMed ID: 23500732 [TBL] [Abstract][Full Text] [Related]
8. Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. Jintapattanakit A; Junyaprasert VB; Mao S; Sitterberg J; Bakowsky U; Kissel T Int J Pharm; 2007 Sep; 342(1-2):240-9. PubMed ID: 17597316 [TBL] [Abstract][Full Text] [Related]
9. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Pardakhty A; Varshosaz J; Rouholamini A Int J Pharm; 2007 Jan; 328(2):130-41. PubMed ID: 16997517 [TBL] [Abstract][Full Text] [Related]
10. Hydrolytic and enzymatic degradation of nanoparticles based on amphiphilic poly(gamma-glutamic acid)-graft-L-phenylalanine copolymers. Akagi T; Higashi M; Kaneko T; Kida T; Akashi M Biomacromolecules; 2006 Jan; 7(1):297-303. PubMed ID: 16398528 [TBL] [Abstract][Full Text] [Related]
11. Thermo and pH responsive polymers as gene delivery vectors: effect of polymer architecture on DNA complexation in vitro. Twaites BR; de las Heras Alarcón C; Cunliffe D; Lavigne M; Pennadam S; Smith JR; Górecki DC; Alexander C J Control Release; 2004 Jul; 97(3):551-66. PubMed ID: 15212886 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable polymer films for releasing nanovehicles containing sirolimus. Kim HI; Takai M; Konno T; Matsuno R; Ishihara K Drug Deliv; 2009 May; 16(4):183-8. PubMed ID: 19514979 [TBL] [Abstract][Full Text] [Related]
13. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. Sant S; Poulin S; Hildgen P J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249 [TBL] [Abstract][Full Text] [Related]
14. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption. Morishita M; Goto T; Peppas NA; Joseph JI; Torjman MC; Munsick C; Nakamura K; Yamagata T; Takayama K; Lowman AM J Control Release; 2004 May; 97(1):115-24. PubMed ID: 15147809 [TBL] [Abstract][Full Text] [Related]
15. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery. Cirpanli Y; Bilensoy E; Lale Doğan A; Caliş S Eur J Pharm Biopharm; 2009 Sep; 73(1):82-9. PubMed ID: 19442723 [TBL] [Abstract][Full Text] [Related]
16. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Kumar PS; Ramakrishna S; Saini TR; Diwan PV Pharmazie; 2006 Jul; 61(7):613-7. PubMed ID: 16889069 [TBL] [Abstract][Full Text] [Related]
18. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Dora CP; Singh SK; Kumar S; Datusalia AK; Deep A Acta Pol Pharm; 2010; 67(3):283-90. PubMed ID: 20524431 [TBL] [Abstract][Full Text] [Related]
19. Amphiphilic polyallylamine based polymeric micelles for siRNA delivery to the gastrointestinal tract: in vitro investigations. Guo J; O'Mahony AM; Cheng WP; O'Driscoll CM Int J Pharm; 2013 Apr; 447(1-2):150-7. PubMed ID: 23467082 [TBL] [Abstract][Full Text] [Related]
20. Effect of thiol pendant conjugates on plasmid DNA binding, release, and stability of polymeric delivery vectors. Bacalocostantis I; Mane VP; Kang MS; Goodley AS; Muro S; Kofinas P Biomacromolecules; 2012 May; 13(5):1331-9. PubMed ID: 22515194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]