These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19766178)

  • 21. Submicroparticles composed of amphiphilic chitosan derivative for oral insulin and curcumin release applications.
    Shelma R; Sharma CP
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):722-8. PubMed ID: 21893399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The stability of insulin-loaded polybutylcyanoacrylate nanoparticles in an oily medium and the hypoglycemic effect in diabetic rats.
    Hou ZQ; Zhang ZX; Xu ZH; Zhang H; Tong ZF; Leng YS
    Yao Xue Xue Bao; 2005 Jan; 40(1):57-64. PubMed ID: 15881329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of toxicity and transfection efficiency of amphiphilic block copolymers and polycationic polymers in striated muscles.
    Roques C; Fattal E; Fromes Y
    J Gene Med; 2009 Mar; 11(3):240-9. PubMed ID: 19189284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study on drug release behaviors of poly-alpha,beta-[n-(2-hydroxyethyl)-L-aspartamide]-g-poly(epsilon-caprolactone) nano- and microparticles.
    Miao ZM; Cheng SX; Zhang XZ; Zhuo RX
    Biomacromolecules; 2006 Jun; 7(6):2020-6. PubMed ID: 16768428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems.
    Singh J; Pandit S; Bramwell VW; Alpar HO
    Methods; 2006 Feb; 38(2):96-105. PubMed ID: 16442811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake and transport of novel amphiphilic polyelectrolyte-insulin nanocomplexes by Caco-2 cells--towards oral insulin.
    Thompson C; Cheng WP; Gadad P; Skene K; Smith M; Smith G; McKinnon A; Knott R
    Pharm Res; 2011 Apr; 28(4):886-96. PubMed ID: 21213024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 9-NC-loaded folate-conjugated polymer micelles as tumor targeted drug delivery system: preparation and evaluation in vitro.
    Han X; Liu J; Liu M; Xie C; Zhan C; Gu B; Liu Y; Feng L; Lu W
    Int J Pharm; 2009 May; 372(1-2):125-31. PubMed ID: 19166923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Starch-based polymeric carriers for oral-insulin delivery.
    Mahkam M
    J Biomed Mater Res A; 2010 Mar; 92(4):1392-7. PubMed ID: 19353572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of hydrophobe on the release behavior of vinyl acetate miniemulsion polymerization.
    Park SJ; Kim KS
    Colloids Surf B Biointerfaces; 2005 Nov; 46(1):52-6. PubMed ID: 16214307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pH-controlled nanoaggregation in amphiphilic polymer co-networks.
    Longo GS; Olvera de la Cruz M; Szleifer I
    ACS Nano; 2013 Mar; 7(3):2693-704. PubMed ID: 23438375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells.
    Sadeghi AM; Dorkoosh FA; Avadi MR; Weinhold M; Bayat A; Delie F; Gurny R; Larijani B; Rafiee-Tehrani M; Junginger HE
    Eur J Pharm Biopharm; 2008 Sep; 70(1):270-8. PubMed ID: 18492606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembled micelles of biodegradable triblock copolymers based on poly(ethyl ethylene phosphate) and poly(-caprolactone) as drug carriers.
    Wang YC; Tang LY; Sun TM; Li CH; Xiong MH; Wang J
    Biomacromolecules; 2008 Jan; 9(1):388-95. PubMed ID: 18081252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymer integrity related absorption mechanism of superporous hydrogel containing interpenetrating polymer networks for oral delivery of insulin.
    Yin L; Ding J; Zhang J; He C; Tang C; Yin C
    Biomaterials; 2010 Apr; 31(12):3347-56. PubMed ID: 20116843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin.
    Damgé C; Vranckx H; Balschmidt P; Couvreur P
    J Pharm Sci; 1997 Dec; 86(12):1403-9. PubMed ID: 9423155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition.
    Nam K; Watanabe J; Ishihara K
    Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Furan-functionalized co-polymers for targeted drug delivery: characterization, self-assembly and drug encapsulation.
    Shi M; Shoichet MS
    J Biomater Sci Polym Ed; 2008; 19(9):1143-57. PubMed ID: 18727857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates.
    Kavimandan NJ; Losi E; Peppas NA
    Biomaterials; 2006 Jul; 27(20):3846-54. PubMed ID: 16529810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functionalized amphiphilic hyperbranched polymers for targeted drug delivery.
    Chen S; Zhang XZ; Cheng SX; Zhuo RX; Gu ZW
    Biomacromolecules; 2008 Oct; 9(10):2578-85. PubMed ID: 18665638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel biodegradable polymers as gene carriers.
    Yang Y; Jia W; Qi X; Yang C; Liu L; Zhang Z; Ma J; Zhou S; Li X
    Macromol Biosci; 2004 Dec; 4(12):1113-7. PubMed ID: 15586388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis, development and in vitro evaluation of drug delivery systems with protective effect against degradation by pepsin.
    Bernkop-Schnürch A; Kirchmayer R; Kratzel M
    J Drug Target; 1999; 7(1):55-63. PubMed ID: 10614815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.