These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19766226)

  • 41. Multiscale modelling and diffraction-based characterization of elastic behaviour of human dentine.
    Sui T; Sandholzer MA; Baimpas N; Dolbnya IP; Walmsley A; Lumley PJ; Landini G; Korsunsky AM
    Acta Biomater; 2013 Aug; 9(8):7937-47. PubMed ID: 23602879
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of carotid plaque tissue properties using an experimental-numerical approach.
    Heiland VM; Forsell C; Roy J; Hedin U; Gasser TC
    J Mech Behav Biomed Mater; 2013 Nov; 27():226-38. PubMed ID: 23790614
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanical properties of human atherosclerotic intima tissue.
    Akyildiz AC; Speelman L; Gijsen FJ
    J Biomech; 2014 Mar; 47(4):773-83. PubMed ID: 24529360
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanical properties and composition of carotid and femoral atherosclerotic plaques: A comparative study.
    Cunnane EM; Mulvihill JJE; Barrett HE; Hennessy MM; Kavanagh EG; Walsh MT
    J Biomech; 2016 Nov; 49(15):3697-3704. PubMed ID: 27776741
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques.
    Holzapfel GA; Sommer G; Regitnig P
    J Biomech Eng; 2004 Oct; 126(5):657-65. PubMed ID: 15648819
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanical and structural properties of different types of human aortic atherosclerotic plaques.
    Kobielarz M; Kozuń M; Gąsior-Głogowska M; Chwiłkowska A
    J Mech Behav Biomed Mater; 2020 Sep; 109():103837. PubMed ID: 32543403
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Experimental Study to Measure the Mechanical Properties of the Human Liver.
    Karimi A; Shojaei A
    Dig Dis; 2018; 36(2):150-155. PubMed ID: 29131053
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of fibre architecture and adaptation in diseased carotid bifurcations.
    Creane A; Maher E; Sultan S; Hynes N; Kelly DJ; Lally C
    Biomech Model Mechanobiol; 2011 Dec; 10(6):831-43. PubMed ID: 21161562
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Compressive mechanical properties of atherosclerotic plaques--indentation test to characterise the local anisotropic behaviour.
    Chai CK; Speelman L; Oomens CW; Baaijens FP
    J Biomech; 2014 Mar; 47(4):784-92. PubMed ID: 24480703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Local anisotropic mechanical properties of human carotid atherosclerotic plaques - characterisation by micro-indentation and inverse finite element analysis.
    Chai CK; Akyildiz AC; Speelman L; Gijsen FJ; Oomens CW; van Sambeek MR; van der Lugt A; Baaijens FP
    J Mech Behav Biomed Mater; 2015 Mar; 43():59-68. PubMed ID: 25553556
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo soft tissue damage assessment for applications in surgery.
    Famaey N; Verbeken E; Vinckier S; Willaert B; Herijgers P; Vander Sloten J
    Med Eng Phys; 2010 Jun; 32(5):437-43. PubMed ID: 20430680
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: a 3D fluid-structure interaction analysis.
    Yuan J; Teng Z; Feng J; Zhang Y; Brown AJ; Gillard JH; Jing Z; Lu Q
    Int J Numer Method Biomed Eng; 2015 Aug; 31(8):. PubMed ID: 25940741
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A remodelling metric for angular fibre distributions and its application to diseased carotid bifurcations.
    Creane A; Maher E; Sultan S; Hynes N; Kelly DJ; Lally C
    Biomech Model Mechanobiol; 2012 Jul; 11(6):869-82. PubMed ID: 22086167
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterising human atherosclerotic carotid plaque tissue composition and morphology using combined spectroscopic and imaging modalities.
    Barrett HE; Mulvihill JJ; Cunnane EM; Walsh MT
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S5. PubMed ID: 25602176
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dissection properties and mechanical strength of tissue components in human carotid bifurcations.
    Tong J; Sommer G; Regitnig P; Holzapfel GA
    Ann Biomed Eng; 2011 Jun; 39(6):1703-19. PubMed ID: 21308483
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical behavior of calcified plaques: a summary of compression and stress-relaxation experiments.
    Topoleski LD; Salunke NV
    Z Kardiol; 2000; 89 Suppl 2():85-91. PubMed ID: 10769409
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Animal models for plaque rupture: a biomechanical assessment.
    van der Heiden K; Hoogendoorn A; Daemen MJ; Gijsen FJ
    Thromb Haemost; 2016 Mar; 115(3):501-8. PubMed ID: 26607378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stress-Relaxation and Cyclic Behavior of Human Carotid Plaque Tissue.
    Paritala PK; Yarlagadda PKDV; Kansky R; Wang J; Mendieta JB; Gu Y; McGahan T; Lloyd T; Li Z
    Front Bioeng Biotechnol; 2020; 8():60. PubMed ID: 32117939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparative study on plaque vulnerability using constitutive equations.
    Karimi A; Navidbakhsh M; Faghihi S
    Perfusion; 2014 Mar; 29(2):178-83. PubMed ID: 23999817
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel technique for the assessment of mechanical properties of vascular tissue.
    Sanders SN; Lopata RGP; van Breemen LCA; van de Vosse FN; Rutten MCM
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1585-1594. PubMed ID: 31980973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.