These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19766226)

  • 61. A novel technique for the assessment of mechanical properties of vascular tissue.
    Sanders SN; Lopata RGP; van Breemen LCA; van de Vosse FN; Rutten MCM
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1585-1594. PubMed ID: 31980973
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tensile property of atheromatous plaque and an analysis of stress in atherosclerotic wall.
    Hayashi K; Imai Y
    J Biomech; 1997 Jun; 30(6):573-9. PubMed ID: 9165390
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Compressive stress-relaxation of human atherosclerotic plaque.
    Salunke NV; Topoleski LD; Humphrey JD; Mergner WJ
    J Biomed Mater Res; 2001 May; 55(2):236-41. PubMed ID: 11255175
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biomechanics of plaque rupture: progress, problems, and new frontiers.
    Richardson PD
    Ann Biomed Eng; 2002 Apr; 30(4):524-36. PubMed ID: 12086003
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Repeated Loading Behavior of Pediatric Porcine Common Carotid Arteries.
    Pasquesi SA; Liu Y; Margulies SS
    J Biomech Eng; 2016 Dec; 138(12):1245021-5. PubMed ID: 27306415
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Composition- and history-dependent radial compressive behavior of human atherosclerotic plaque.
    Topoleski LD; Salunke NV; Humphrey JD; Mergner WJ
    J Biomed Mater Res; 1997 Apr; 35(1):117-27. PubMed ID: 9104704
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Testing of small connective tissue specimens for the determination of the mechanical behaviour of atherosclerotic plaques.
    Lendon CL; Davies MJ; Richardson PD; Born GV
    J Biomed Eng; 1993 Jan; 15(1):27-33. PubMed ID: 8419677
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Profile of genetic variations in severely calcified carotid plaques by whole-exome sequencing.
    Katano H; Nishikawa Y; Yamada H; Iwata T; Mase M
    Surg Neurol Int; 2020; 11():286. PubMed ID: 33033648
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Correlation between calcium, water contents and ultrasonographic appearance of atherosclerotic lesions of carotid artery lesions.
    Fülesdi B; Farkas S; Gyöngyösi Z; Siró P; Bereczki D; Bacsó J; Csiba L
    Transl Neurosci; 2020; 11(1):269-276. PubMed ID: 33335767
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cervical Rotatory Manipulation Decreases Uniaxial Tensile Properties of Rabbit Atherosclerotic Internal Carotid Artery.
    Zhang S; Qi J; Zhang L; Chen C; Mondal S; Ping K; Chen Y; Li Y
    Evid Based Complement Alternat Med; 2017; 2017():5189356. PubMed ID: 28303160
    [No Abstract]   [Full Text] [Related]  

  • 71. Determination of Viscoelastic Properties of human Carotid Atherosclerotic Plaque by Inverse Boundary Value Analysis.
    Leng X; Zhou B; Deng X; Davis L; Sutton MA; Shazly T; Lessner SM
    IOP Conf Ser Mater Sci Eng; 2018; 381():. PubMed ID: 31156719
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Shear stress: the dark energy of atherosclerotic plaques.
    Evans PC; Fragiadaki M; Morris PD; Serbanovic-Canic J
    Cardiovasc Res; 2021 Jul; 117(8):1811-1813. PubMed ID: 33146373
    [No Abstract]   [Full Text] [Related]  

  • 73. Lessons from autopsy: Topographical variability of atherosclerosis plaques.
    Faa G; Cau R; Ravarino A; Canino A; Van Eyken P; Fraschini M; Suri JS; Saba L
    J Public Health Res; 2024 Apr; 13(2):22799036241249659. PubMed ID: 38694451
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Erratum to: Intravascular ultrasound elastography analysis of the elastic mechanical properties of atherosclerotic plaque.
    Li Z; Wang L; Hu X; Zhang P; Chen Y; Liu X; Xu M; Su H; Zhang M
    Int J Cardiovasc Imaging; 2017 Nov; 33(11):1673. PubMed ID: 28639099
    [No Abstract]   [Full Text] [Related]  

  • 75. A Novel Artificial Coronary Plaque to Model Coronary Heart Disease.
    Lindenhahn P; Richter J; Pepelanova I; Seeger B; Volk HA; Hinkel R; Hiebl B; Scheper T; Hinrichs JB; Becker LS; Haverich A; Kaufeld T
    Biomimetics (Basel); 2024 Mar; 9(4):. PubMed ID: 38667208
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Local and systemic factors associated with quantitative stiffness of carotid plaque.
    Sakaeyama Y; Kondo K; Terazono S; Fuchinoue Y; Kubota S; Mikai M; Abe M; Sugo N; Nagao T; Nemoto M
    Acta Neurochir (Wien); 2024 Jan; 166(1):54. PubMed ID: 38289409
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Coronary artery properties in atherosclerosis: A deep learning predictive model.
    Caballero R; Martínez MÁ; Peña E
    Front Physiol; 2023; 14():1162436. PubMed ID: 37089419
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Methodology for estimation of undeformed thickness of arterial tissues.
    Schwarz D; Fleisman J; Vitasek R; Polzer S
    Sci Rep; 2023 Feb; 13(1):2816. PubMed ID: 36797267
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Understanding Atherosclerosis Pathophysiology: Can Additive Manufacturing Be Helpful?
    Henriques J; Amaro AM; Piedade AP
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771780
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Vascular stiffening and endothelial dysfunction in atherosclerosis.
    Hooglugt A; Klatt O; Huveneers S
    Curr Opin Lipidol; 2022 Dec; 33(6):353-363. PubMed ID: 36206080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.