These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19766388)

  • 21. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory.
    Sousa FW; Sousa MJ; Oliveira IR; Oliveira AG; Cavalcante RM; Fechine PB; Neto VO; de Keukeleire D; Nascimento RF
    J Environ Manage; 2009 Aug; 90(11):3340-4. PubMed ID: 19535200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosorption of metal ions from aqueous solution and electroplating industry wastewater by Aspergillus japonicus: phytotoxicity studies.
    Binupriya AR; Sathishkumar M; Swaminathan K; Jeong ES; Yun SE; Pattabi S
    Bull Environ Contam Toxicol; 2006 Aug; 77(2):219-27. PubMed ID: 16977523
    [No Abstract]   [Full Text] [Related]  

  • 23. Remediation of lead from lead electroplating industrial effluent using sago waste.
    Jeyanthi GP; Shanthi G
    J Environ Sci Eng; 2007 Jan; 49(1):13-6. PubMed ID: 18472553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radioactive iodine waste treatment using electrodialysis with an anion exchange paper membrane.
    Inoue H; Kagoshima M; Yamasaki M; Honda Y
    Appl Radiat Isot; 2004 Dec; 61(6):1189-93. PubMed ID: 15388109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of Cr(VI) from wastewaters at semi-industrial electrochemical reactors with rotating ring electrodes.
    Rodríguez R MG; Mendoza V; Puebla H; Martínez D SA
    J Hazard Mater; 2009 Apr; 163(2-3):1221-9. PubMed ID: 18775602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode.
    Zaggout FR; Abu Ghalwa N
    J Environ Manage; 2008 Jan; 86(1):291-6. PubMed ID: 17287071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of ammonium ion from produced waters in petroleum offshore exploitation by a batch single-stage electrolytic process.
    de Lima RM; da Silva Wildhagen GR; da Cunha JW; Afonso JC
    J Hazard Mater; 2009 Jan; 161(2-3):1560-4. PubMed ID: 18508196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode.
    Wang CT; Hu JL; Chou WL; Kuo YM
    J Hazard Mater; 2008 Apr; 152(2):601-6. PubMed ID: 17707581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Concentration and purification of chromate from electroplating wastewater by two-stage electrodialysis processes.
    Chen SS; Li CW; Hsu HD; Lee PC; Chang YM; Yang CH
    J Hazard Mater; 2009 Jan; 161(2-3):1075-80. PubMed ID: 18555595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of low concentrations of nickel ions in electroplating wastewater using capacitive deionization technology.
    Wang C; Li T; Yu G; Deng S
    Chemosphere; 2021 Dec; 284():131341. PubMed ID: 34323794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of cadmium and nickel from wastewater using bagasse fly ash--a sugar industry waste.
    Gupta VK; Jain CK; Ali I; Sharma M; Saini VK
    Water Res; 2003 Sep; 37(16):4038-44. PubMed ID: 12909124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fixed-bed column study for the removal of cadmium (II) and nickel (II) ions from aqueous solutions using peat and mollusk shells.
    Li C; Champagne P
    J Hazard Mater; 2009 Nov; 171(1-3):872-8. PubMed ID: 19608338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Treatment of low-level Cu(II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology.
    Zhao C; Zhang L; Ge R; Zhang A; Zhang C; Chen X
    Chemosphere; 2019 Feb; 217():763-772. PubMed ID: 30448756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections.
    Kobya M; Bayramoglu M; Eyvaz M
    J Hazard Mater; 2007 Sep; 148(1-2):311-8. PubMed ID: 17368931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using aluminum electrodes.
    Yildiz YS
    J Hazard Mater; 2008 May; 153(1-2):194-200. PubMed ID: 17875363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration.
    Malpass GR; Miwa DW; Mortari DA; Machado SA; Motheo AJ
    Water Res; 2007 Jul; 41(13):2969-77. PubMed ID: 17512571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous electrochemical treatment of simulated industrial textile wastewater from industrial components in a tubular reactor.
    Körbahti BK; Tanyolaç A
    J Hazard Mater; 2009 Oct; 170(2-3):771-8. PubMed ID: 19524357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction.
    Hunsom M; Pruksathorn K; Damronglerd S; Vergnes H; Duverneuil P
    Water Res; 2005 Feb; 39(4):610-6. PubMed ID: 15707634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant.
    Yeon KH; Song JH; Moon SH
    Water Res; 2004 Apr; 38(7):1911-21. PubMed ID: 15026246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Treatment of chrome plating wastewater (Cr+6) using activated alumina.
    Sarkar S; Gupta A
    Indian J Environ Health; 2003 Jan; 45(1):73-82. PubMed ID: 14723286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.