BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19766590)

  • 1. Silica xerogel/aerogel-supported lipid bilayers: consequences of surface corrugation.
    Goksu EI; Hoopes MI; Nellis BA; Xing C; Faller R; Frank CW; Risbud SH; Satcher JH; Longo ML
    Biochim Biophys Acta; 2010 Apr; 1798(4):719-29. PubMed ID: 19766590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of support corrugation on silica xerogel--supported phase-separated lipid bilayers.
    Goksu EI; Nellis BA; Lin WC; Satcher JH; Groves JT; Risbud SH; Longo ML
    Langmuir; 2009 Apr; 25(6):3713-7. PubMed ID: 19708250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid biomembranes supported on nanoporous aerogel/xerogel substrates.
    Weng KC; Stålgren JJ; Duval DJ; Risbud SH; Frank CW
    Langmuir; 2004 Aug; 20(17):7232-9. PubMed ID: 15301510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ternary lipid bilayers containing cholesterol in a high curvature silica xerogel environment.
    Goksu EI; Longo ML
    Langmuir; 2010 Jun; 26(11):8614-24. PubMed ID: 20143868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid domains in supported lipid bilayer for atomic force microscopy.
    Lin WC; Blanchette CD; Ratto TV; Longo ML
    Methods Mol Biol; 2007; 400():503-13. PubMed ID: 17951756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A surface view on membrane structure, dynamics and applications.
    Pérez-Gil J
    Biochim Biophys Acta; 2010 Apr; 1798(4):701-2. PubMed ID: 20206732
    [No Abstract]   [Full Text] [Related]  

  • 7. Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.
    Marquês JT; Viana AS; De Almeida RF
    Biochim Biophys Acta; 2011 Jan; 1808(1):405-14. PubMed ID: 20955684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supported lipid bilayers with controlled curvature via colloidal lithography.
    Sundh M; Manandhar M; Svedhem S; Sutherland DS
    IEEE Trans Nanobioscience; 2011 Sep; 10(3):187-93. PubMed ID: 21926028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging cerebroside-rich domains for phase and shape characterization in binary and ternary mixtures.
    Longo ML; Blanchette CD
    Biochim Biophys Acta; 2010 Jul; 1798(7):1357-67. PubMed ID: 19945421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization.
    Shaw JE; Epand RF; Epand RM; Li Z; Bittman R; Yip CM
    Biophys J; 2006 Mar; 90(6):2170-8. PubMed ID: 16361347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore spanning lipid bilayers on mesoporous silica having varying pore size.
    Claesson M; Frost R; Svedhem S; Andersson M
    Langmuir; 2011 Jul; 27(14):8974-82. PubMed ID: 21650458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers.
    Mecke A; Lee DK; Ramamoorthy A; Orr BG; Banaszak Holl MM
    Biophys J; 2005 Dec; 89(6):4043-50. PubMed ID: 16183881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Packing density changes of supported lipid bilayers observed by fluorescence microscopy and quartz crystal microbalance-dissipation.
    Kataoka-Hamai C; Higuchi M
    J Phys Chem B; 2014 Sep; 118(37):10934-44. PubMed ID: 25163021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral organization in lipid-cholesterol mixed bilayers.
    Pandit SA; Khelashvili G; Jakobsson E; Grama A; Scott HL
    Biophys J; 2007 Jan; 92(2):440-7. PubMed ID: 17071661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of surface treatment on diffusion and domain formation in supported lipid bilayers.
    Seu KJ; Pandey AP; Haque F; Proctor EA; Ribbe AE; Hovis JS
    Biophys J; 2007 Apr; 92(7):2445-50. PubMed ID: 17218468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM
    J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of pit-spanning phospholipid bilayers on nanostructured silicon dioxide surfaces for studying biological membrane events.
    Pfeiffer I; Zäch M
    Methods Mol Biol; 2013; 991():113-25. PubMed ID: 23546664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing the solubilization of supported lipid bilayers by an amphiphilic peptide.
    Rigby-Singleton SM; Davies MC; Harris H; O'Shea P; Allen S
    Langmuir; 2006 Jul; 22(14):6273-9. PubMed ID: 16800686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability.
    Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions.
    Blanchette CD; Lin WC; Ratto TV; Longo ML
    Biophys J; 2006 Jun; 90(12):4466-78. PubMed ID: 16565044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.