These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 19766742)

  • 1. Comparison of two methods of fatigue testing bone cement.
    Tanner KE; Wang JS; Kjellson F; Lidgren L
    Acta Biomater; 2010 Mar; 6(3):943-52. PubMed ID: 19766742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the minimum number of test specimens for fatigue testing of acrylic bone cement.
    Lewis G; Sadhasivini A
    Biomaterials; 2004 Aug; 25(18):4425-32. PubMed ID: 15046933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of the viscosity classification of an acrylic bone cement on its in vitro fatigue performance.
    Lewis G; Janna S
    Biomed Mater Eng; 2004; 14(1):33-42. PubMed ID: 14757951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
    Kurtz SM; Villarraga ML; Zhao K; Edidin AA
    Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biomechanical strength of bone cement impregnated with diphosphonate].
    Cai XZ; Yan SG; Ying ZM; Xu YQ; Lü RK
    Zhonghua Wai Ke Za Zhi; 2009 Mar; 47(6):465-8. PubMed ID: 19595238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Damage accumulation, fatigue and creep behaviour of vacuum mixed bone cement.
    Jeffers JR; Browne M; Taylor M
    Biomaterials; 2005 Sep; 26(27):5532-41. PubMed ID: 15860209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain-controlled fatigue of acrylic bone cement.
    Carter DR; Gates EI; Harris WH
    J Biomed Mater Res; 1982 Sep; 16(5):647-57. PubMed ID: 7130218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the fatigue characteristics of centrifuged and uncentrifuged Simplex P bone cement.
    Davies JP; Burke DW; O'Connor DO; Harris WH
    J Orthop Res; 1987; 5(3):366-71. PubMed ID: 3625359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the optimum loading of an antibiotic powder in an acrylic bone cement: gentamicin sulfate in SmartSet HV.
    Lewis G; Janna S
    Acta Orthop; 2006 Aug; 77(4):622-7. PubMed ID: 16929440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting for inclusions and voids allows the prediction of tensile fatigue life of bone cement.
    Coultrup OJ; Browne M; Hunt C; Taylor M
    J Biomech Eng; 2009 May; 131(5):051007. PubMed ID: 19388777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting in vivo clinical performance of anterior cruciate ligament fixation methods from in vitro analysis: industrial tests of fatigue life and tolerance limits are more useful than other cyclic loading parameters.
    Saweeres ES; Kuiper JH; Evans RO; Richardson JB; White SH
    Am J Sports Med; 2005 May; 33(5):666-73. PubMed ID: 15722271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of the effect of porosity on the fatigue strength of bone cement.
    Hoey D; Taylor D
    Acta Biomater; 2009 Feb; 5(2):719-26. PubMed ID: 18835229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of bone cements: are current preclinical specifications adequate?
    Nottrott M; Mølster AO; Moldestad IO; Walsh WR; Gjerdet NR
    Acta Orthop; 2008 Dec; 79(6):826-31. PubMed ID: 19085502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of test sample shape and surface production method on the fatigue behaviour of PMMA bone cement.
    Sheafi EM; Tanner KE
    J Mech Behav Biomed Mater; 2014 Jan; 29():91-102. PubMed ID: 24070780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue and fracture toughness of acrylic bone cements modified with long-chain amine activators.
    Deb S; Lewis G; Janna SW; Vazquez B; San Roman J
    J Biomed Mater Res A; 2003 Nov; 67(2):571-7. PubMed ID: 14566799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of various vacuum mixing systems and bone cements as regards reliability, porosity and bending strength.
    Mau H; Schelling K; Heisel C; Wang JS; Breusch SJ
    Acta Orthop Scand; 2004 Apr; 75(2):160-72. PubMed ID: 15180231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of test specimen fabrication method and cross-section configuration on tension-tension fatigue life of PMMA bone cement.
    Sheafi EM; Tanner KE
    J Mech Behav Biomed Mater; 2015 Nov; 51():380-7. PubMed ID: 26295451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of antibiotic impregnation on the fatigue life of Simplex P and Palacos R acrylic bone cements, with and without centrifugation.
    Davies JP; O'Connor DO; Burke DW; Harris WH
    J Biomed Mater Res; 1989 Apr; 23(4):379-97. PubMed ID: 2708414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the mechanical properties of Simplex P, Zimmer Regular, and LVC bone cements.
    Davies JP; O'Connor DO; Greer JA; Harris WH
    J Biomed Mater Res; 1987 Jun; 21(6):719-30. PubMed ID: 3597461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.