BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19766967)

  • 21. Activity- and calcineurin-independent nuclear shuttling of NFATc1, but not NFATc3, in adult skeletal muscle fibers.
    Shen T; Liu Y; Cseresnyés Z; Hawkins A; Randall WR; Schneider MF
    Mol Biol Cell; 2006 Apr; 17(4):1570-82. PubMed ID: 16436503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcineurin differentially regulates fast myosin heavy chain genes in oxidative muscle fibre type conversion.
    da Costa N; Edgar J; Ooi PT; Su Y; Meissner JD; Chang KC
    Cell Tissue Res; 2007 Sep; 329(3):515-27. PubMed ID: 17587059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway.
    Semsarian C; Wu MJ; Ju YK; Marciniec T; Yeoh T; Allen DG; Harvey RP; Graham RM
    Nature; 1999 Aug; 400(6744):576-81. PubMed ID: 10448861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload.
    Fajardo VA; Rietze BA; Chambers PJ; Bellissimo C; Bombardier E; Quadrilatero J; Tupling AR
    Am J Physiol Cell Physiol; 2017 Aug; 313(2):C154-C161. PubMed ID: 28592414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. L-theanine induces skeletal muscle fiber type transformation by activation of prox1/CaN signaling pathway in C2C12 myotubes.
    Chen X; Zhang M; Jia G; Zhao H; Liu G; Huang Z
    Biol Chem; 2022 Sep; 403(10):959-967. PubMed ID: 35851441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Review of Calcineurin Biophysics with Implications for Cardiac Physiology.
    Williams RB; Johnson CN
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skeletal muscle reprogramming by activation of calcineurin improves insulin action on metabolic pathways.
    Ryder JW; Bassel-Duby R; Olson EN; Zierath JR
    J Biol Chem; 2003 Nov; 278(45):44298-304. PubMed ID: 12941959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene polymorphisms and fiber-type composition of human skeletal muscle.
    Ahmetov II; Vinogradova OL; Williams AG
    Int J Sport Nutr Exerc Metab; 2012 Aug; 22(4):292-303. PubMed ID: 22645169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy.
    Cowling BS; McGrath MJ; Nguyen MA; Cottle DL; Kee AJ; Brown S; Schessl J; Zou Y; Joya J; Bönnemann CG; Hardeman EC; Mitchell CA
    J Cell Biol; 2008 Dec; 183(6):1033-48. PubMed ID: 19075112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium-dependent gene regulation in myocyte hypertrophy and remodeling.
    Williams RS; Rosenberg P
    Cold Spring Harb Symp Quant Biol; 2002; 67():339-44. PubMed ID: 12858558
    [No Abstract]   [Full Text] [Related]  

  • 31. Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle.
    Liu Y; Shen T; Randall WR; Schneider MF
    J Muscle Res Cell Motil; 2005; 26(1):13-21. PubMed ID: 16096682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcineurin.
    Creamer TP
    Cell Commun Signal; 2020 Aug; 18(1):137. PubMed ID: 32859215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FGF6 regulates muscle differentiation through a calcineurin-dependent pathway in regenerating soleus of adult mice.
    Armand AS; Pariset C; Laziz I; Launay T; Fiore F; Della Gaspera B; Birnbaum D; Charbonnier F; Chanoine C
    J Cell Physiol; 2005 Jul; 204(1):297-308. PubMed ID: 15672378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force.
    Ferreira DMS; Cheng AJ; Agudelo LZ; Cervenka I; Chaillou T; Correia JC; Porsmyr-Palmertz M; Izadi M; Hansson A; Martínez-Redondo V; Valente-Silva P; Pettersson-Klein AT; Estall JL; Robinson MM; Nair KS; Lanner JT; Ruas JL
    Skelet Muscle; 2019 Oct; 9(1):26. PubMed ID: 31666122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo.
    Sanna B; Brandt EB; Kaiser RA; Pfluger P; Witt SA; Kimball TR; van Rooij E; De Windt LJ; Rothenberg ME; Tschop MH; Benoit SC; Molkentin JD
    Proc Natl Acad Sci U S A; 2006 May; 103(19):7327-32. PubMed ID: 16648267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle A-kinase-anchoring protein-β-bound calcineurin toggles active and repressive transcriptional complexes of myocyte enhancer factor 2D.
    Li J; Aponte Paris S; Thakur H; Kapiloff MS; Dodge-Kafka KL
    J Biol Chem; 2019 Feb; 294(7):2543-2554. PubMed ID: 30523159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcineurin is required for skeletal muscle hypertrophy.
    Dunn SE; Burns JL; Michel RN
    J Biol Chem; 1999 Jul; 274(31):21908-12. PubMed ID: 10419511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of the phosphatase PP2B by protein-protein interactions.
    Nygren PJ; Scott JD
    Biochem Soc Trans; 2016 Oct; 44(5):1313-1319. PubMed ID: 27911714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of the calcineurin signaling pathway to overload-induced skeletal muscle fiber-type transition.
    Miyazaki M; Hitomi Y; Kizaki T; Ohno H; Haga S; Takemasa T
    J Physiol Pharmacol; 2004 Dec; 55(4):751-64. PubMed ID: 15613741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nerve activity-dependent modulation of calcineurin signaling in adult fast and slow skeletal muscle fibers.
    Dunn SE; Simard AR; Bassel-Duby R; Williams RS; Michel RN
    J Biol Chem; 2001 Nov; 276(48):45243-54. PubMed ID: 11555650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.