These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 19767007)
1. Effects of pressure drop, particle size and thermal conditions on retention and efficiency in supercritical fluid chromatography. Poe DP; Schroden JJ J Chromatogr A; 2009 Nov; 1216(45):7915-26. PubMed ID: 19767007 [TBL] [Abstract][Full Text] [Related]
2. Efficiency of supercritical fluid chromatography columns in different thermal environments. Kaczmarski K; Poe DP; Tarafder A; Guiochon G J Chromatogr A; 2013 May; 1291():155-73. PubMed ID: 23598158 [TBL] [Abstract][Full Text] [Related]
3. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles. Poe DP; Veit D; Ranger M; Kaczmarski K; Tarafder A; Guiochon G J Chromatogr A; 2012 Aug; 1250():105-14. PubMed ID: 22521956 [TBL] [Abstract][Full Text] [Related]
4. Pressure, temperature and density drops along supercritical fluid chromatography columns. II. Theoretical simulation for neat carbon dioxide and columns packed with 3-μm particles. Kaczmarski K; Poe DP; Tarafder A; Guiochon G J Chromatogr A; 2012 Aug; 1250():115-23. PubMed ID: 22687711 [TBL] [Abstract][Full Text] [Related]
5. Effect of the thermal environment on the efficiency of packed columns in supercritical fluid chromatography. Zauner J; Lusk R; Koski S; Poe DP J Chromatogr A; 2012 Nov; 1266():149-57. PubMed ID: 23107122 [TBL] [Abstract][Full Text] [Related]
6. Effect of pressure drop on solute retention and column efficiency in supercritical fluid chromatography. Rajendran A; Kräuchi O; Mazzotti M; Morbidelli M J Chromatogr A; 2005 Oct; 1092(1):149-60. PubMed ID: 16188570 [TBL] [Abstract][Full Text] [Related]
7. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography. Gritti F; Guiochon G J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980 [TBL] [Abstract][Full Text] [Related]
8. Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases. Lesellier E J Chromatogr A; 2012 Mar; 1228():89-98. PubMed ID: 22192562 [TBL] [Abstract][Full Text] [Related]
9. Practical assessment of frictional heating effects and thermostat design on the performance of conventional (3 microm and 5 microm) columns in reversed-phase high-performance liquid chromatography. Fallas MM; Hadley MR; McCalley DV J Chromatogr A; 2009 May; 1216(18):3961-9. PubMed ID: 19339017 [TBL] [Abstract][Full Text] [Related]
10. Kinetic behaviour in supercritical fluid chromatography with modified mobile phase for 5 μm particle size and varied flow rates. Lesellier E; Fougere L; Poe DP J Chromatogr A; 2011 Apr; 1218(15):2058-64. PubMed ID: 21232748 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a 2.6 μm Kinetex porous shell hydrophilic interaction liquid chromatography column in supercritical fluid chromatography with a comparison to 3 μm totally porous silica. Berger TA J Chromatogr A; 2011 Jul; 1218(28):4559-68. PubMed ID: 21628062 [TBL] [Abstract][Full Text] [Related]
12. Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I--elution of an unretained tracer. Kaczmarski K; Poe DP; Guiochon G J Chromatogr A; 2010 Oct; 1217(42):6578-87. PubMed ID: 20813372 [TBL] [Abstract][Full Text] [Related]
13. Effect of pressure drop on solute retention and column efficiency in supercritical fluid chromatography. Part 2: Modified carbon dioxide as mobile phase. Rajendran A; Gilkison TS; Mazzotti M J Sep Sci; 2008 May; 31(8):1279-89. PubMed ID: 18389520 [TBL] [Abstract][Full Text] [Related]
14. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds. Grand-Guillaume Perrenoud A; Veuthey JL; Guillarme D J Chromatogr A; 2012 Nov; 1266():158-67. PubMed ID: 23092872 [TBL] [Abstract][Full Text] [Related]
15. Modeling of thermal processes in high pressure liquid chromatography: I. Low pressure onset of thermal heterogeneity. Kaczmarski K; Kostka J; Zapała W; Guiochon G J Chromatogr A; 2009 Sep; 1216(38):6560-74. PubMed ID: 19640545 [TBL] [Abstract][Full Text] [Related]
16. Characterization of carbon dioxide mobile phase density profiles in packed capillary columns by Raman microscopy. Baker LR; Orton AW; Goates SR; Horn BA Appl Spectrosc; 2009 Jan; 63(1):108-11. PubMed ID: 19146727 [TBL] [Abstract][Full Text] [Related]
17. Density gradients in packed columns: II. Effects of density gradients on efficiency in supercritical fluid separations. Baker LR; Orton AW; Stark MA; Goates SR J Chromatogr A; 2009 Jul; 1216(29):5594-9. PubMed ID: 19539294 [TBL] [Abstract][Full Text] [Related]
18. Retention mechanisms in super/subcritical fluid chromatography on packed columns. Lesellier E J Chromatogr A; 2009 Mar; 1216(10):1881-90. PubMed ID: 18996534 [TBL] [Abstract][Full Text] [Related]
19. Maximizing performance in supercritical fluid chromatography using low-density mobile phases. Gritti F; Fogwill M; Gilar M; Jarrell JA J Chromatogr A; 2016 Oct; 1468():217-227. PubMed ID: 27658377 [TBL] [Abstract][Full Text] [Related]
20. Numerical modeling of the elution peak profiles of retained solutes in supercritical fluid chromatography. Kaczmarski K; Poe DP; Guiochon G J Chromatogr A; 2011 Sep; 1218(37):6531-9. PubMed ID: 21821256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]