BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19767400)

  • 1. Non-proteolytic HCN2 in the heart.
    Yu HG; Huang J; Lin YC
    J Biol Chem; 2009 Sep; 284(39):le7; author reply le8. PubMed ID: 19767400
    [No Abstract]   [Full Text] [Related]  

  • 2. Proteolytic processing of HCN2 and co-assembly with HCN4 in the generation of cardiac pacemaker channels.
    Ye B; Nerbonne JM
    J Biol Chem; 2009 Sep; 284(38):25553-9. PubMed ID: 19574228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide.
    Chen S; Wang J; Siegelbaum SA
    J Gen Physiol; 2001 May; 117(5):491-504. PubMed ID: 11331358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular Mg2+ is a voltage-dependent pore blocker of HCN channels.
    Vemana S; Pandey S; Larsson HP
    Am J Physiol Cell Physiol; 2008 Aug; 295(2):C557-65. PubMed ID: 18579800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase.
    Zong X; Eckert C; Yuan H; Wahl-Schott C; Abicht H; Fang L; Li R; Mistrik P; Gerstner A; Much B; Baumann L; Michalakis S; Zeng R; Chen Z; Biel M
    J Biol Chem; 2005 Oct; 280(40):34224-32. PubMed ID: 16079136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A secondary structural transition in the C-helix promotes gating of cyclic nucleotide-regulated ion channels.
    Puljung MC; Zagotta WN
    J Biol Chem; 2013 May; 288(18):12944-56. PubMed ID: 23525108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Associated changes in HCN2 and HCN4 transcripts and I(f) pacemaker current in myocytes.
    Zhang Q; Huang A; Lin YC; Yu HG
    Biochim Biophys Acta; 2009 May; 1788(5):1138-47. PubMed ID: 19236845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage sensing and activation gating of HCN pacemaker channels.
    Chen J; Piper DR; Sanguinetti MC
    Trends Cardiovasc Med; 2002 Jan; 12(1):42-5. PubMed ID: 11796244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct evidence for calcium conductance of hyperpolarization-activated cyclic nucleotide-gated channels and human native If at physiological calcium concentrations.
    Michels G; Brandt MC; Zagidullin N; Khan IF; Larbig R; van Aaken S; Wippermann J; Hoppe UC
    Cardiovasc Res; 2008 Jun; 78(3):466-75. PubMed ID: 18252758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary emergence of N-glycosylation as a variable promoter of HCN channel surface expression.
    Hegle AP; Nazzari H; Roth A; Angoli D; Accili EA
    Am J Physiol Cell Physiol; 2010 May; 298(5):C1066-76. PubMed ID: 20130205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Putting the pacemaker channel through its paces to build a better biological pacemaker.
    Accili E
    J Physiol; 2009 Apr; 587(Pt 7):1381-2. PubMed ID: 19336609
    [No Abstract]   [Full Text] [Related]  

  • 12. Single-channel properties support a potential contribution of hyperpolarization-activated cyclic nucleotide-gated channels and If to cardiac arrhythmias.
    Michels G; Er F; Khan I; Südkamp M; Herzig S; Hoppe UC
    Circulation; 2005 Feb; 111(4):399-404. PubMed ID: 15687126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers.
    Decher N; Chen J; Sanguinetti MC
    J Biol Chem; 2004 Apr; 279(14):13859-65. PubMed ID: 14726518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro characterization of HCN channel kinetics and frequency dependence in myocytes predicts biological pacemaker functionality.
    Zhao X; Bucchi A; Oren RV; Kryukova Y; Dun W; Clancy CE; Robinson RB
    J Physiol; 2009 Apr; 587(Pt 7):1513-25. PubMed ID: 19171659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MiRP1 modulates HCN2 channel expression and gating in cardiac myocytes.
    Qu J; Kryukova Y; Potapova IA; Doronin SV; Larsen M; Krishnamurthy G; Cohen IS; Robinson RB
    J Biol Chem; 2004 Oct; 279(42):43497-502. PubMed ID: 15292247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage sensor movement and cAMP binding allosterically regulate an inherently voltage-independent closed-open transition in HCN channels.
    Chen S; Wang J; Zhou L; George MS; Siegelbaum SA
    J Gen Physiol; 2007 Feb; 129(2):175-88. PubMed ID: 17261842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperpolarization-activated cyclic nucleotide-gated cation channels regulate auditory coincidence detection in nucleus laminaris of the chick.
    Yamada R; Kuba H; Ishii TM; Ohmori H
    J Neurosci; 2005 Sep; 25(39):8867-77. PubMed ID: 16192376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of hyperpolarization-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions.
    Wang J; Chen S; Siegelbaum SA
    J Gen Physiol; 2001 Sep; 118(3):237-50. PubMed ID: 11524455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of hyperpolarization-activated HCN channels by cAMP through a gating switch in binding domain symmetry.
    Ulens C; Siegelbaum SA
    Neuron; 2003 Dec; 40(5):959-70. PubMed ID: 14659094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel.
    Rothberg BS; Shin KS; Phale PS; Yellen G
    J Gen Physiol; 2002 Jan; 119(1):83-91. PubMed ID: 11773240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.